ProPainter / model /modules /flow_loss_utils.py
sczhou's picture
init code
320e465
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def flow_warp(x,
flow,
interpolation='bilinear',
padding_mode='zeros',
align_corners=True):
"""Warp an image or a feature map with optical flow.
Args:
x (Tensor): Tensor with size (n, c, h, w).
flow (Tensor): Tensor with size (n, h, w, 2). The last dimension is
a two-channel, denoting the width and height relative offsets.
Note that the values are not normalized to [-1, 1].
interpolation (str): Interpolation mode: 'nearest' or 'bilinear'.
Default: 'bilinear'.
padding_mode (str): Padding mode: 'zeros' or 'border' or 'reflection'.
Default: 'zeros'.
align_corners (bool): Whether align corners. Default: True.
Returns:
Tensor: Warped image or feature map.
"""
if x.size()[-2:] != flow.size()[1:3]:
raise ValueError(f'The spatial sizes of input ({x.size()[-2:]}) and '
f'flow ({flow.size()[1:3]}) are not the same.')
_, _, h, w = x.size()
# create mesh grid
device = flow.device
grid_y, grid_x = torch.meshgrid(torch.arange(0, h, device=device), torch.arange(0, w, device=device))
grid = torch.stack((grid_x, grid_y), 2).type_as(x) # (w, h, 2)
grid.requires_grad = False
grid_flow = grid + flow
# scale grid_flow to [-1,1]
grid_flow_x = 2.0 * grid_flow[:, :, :, 0] / max(w - 1, 1) - 1.0
grid_flow_y = 2.0 * grid_flow[:, :, :, 1] / max(h - 1, 1) - 1.0
grid_flow = torch.stack((grid_flow_x, grid_flow_y), dim=3)
output = F.grid_sample(x,
grid_flow,
mode=interpolation,
padding_mode=padding_mode,
align_corners=align_corners)
return output
# def image_warp(image, flow):
# b, c, h, w = image.size()
# device = image.device
# flow = torch.cat([flow[:, 0:1, :, :] / ((w - 1.0) / 2.0), flow[:, 1:2, :, :] / ((h - 1.0) / 2.0)], dim=1) # normalize to [-1~1](from upper left to lower right
# flow = flow.permute(0, 2, 3, 1) # if you wanna use grid_sample function, the channel(band) shape of show must be in the last dimension
# x = np.linspace(-1, 1, w)
# y = np.linspace(-1, 1, h)
# X, Y = np.meshgrid(x, y)
# grid = torch.cat((torch.from_numpy(X.astype('float32')).unsqueeze(0).unsqueeze(3),
# torch.from_numpy(Y.astype('float32')).unsqueeze(0).unsqueeze(3)), 3).to(device)
# output = torch.nn.functional.grid_sample(image, grid + flow, mode='bilinear', padding_mode='zeros')
# return output
def length_sq(x):
return torch.sum(torch.square(x), dim=1, keepdim=True)
def fbConsistencyCheck(flow_fw, flow_bw, alpha1=0.01, alpha2=0.5):
flow_bw_warped = flow_warp(flow_bw, flow_fw.permute(0, 2, 3, 1)) # wb(wf(x))
flow_fw_warped = flow_warp(flow_fw, flow_bw.permute(0, 2, 3, 1)) # wf(wb(x))
flow_diff_fw = flow_fw + flow_bw_warped # wf + wb(wf(x))
flow_diff_bw = flow_bw + flow_fw_warped # wb + wf(wb(x))
mag_sq_fw = length_sq(flow_fw) + length_sq(flow_bw_warped) # |wf| + |wb(wf(x))|
mag_sq_bw = length_sq(flow_bw) + length_sq(flow_fw_warped) # |wb| + |wf(wb(x))|
occ_thresh_fw = alpha1 * mag_sq_fw + alpha2
occ_thresh_bw = alpha1 * mag_sq_bw + alpha2
fb_occ_fw = (length_sq(flow_diff_fw) > occ_thresh_fw).float()
fb_occ_bw = (length_sq(flow_diff_bw) > occ_thresh_bw).float()
return fb_occ_fw, fb_occ_bw # fb_occ_fw -> frame2 area occluded by frame1, fb_occ_bw -> frame1 area occluded by frame2
def rgb2gray(image):
gray_image = image[:, 0] * 0.299 + image[:, 1] * 0.587 + 0.110 * image[:, 2]
gray_image = gray_image.unsqueeze(1)
return gray_image
def ternary_transform(image, max_distance=1):
device = image.device
patch_size = 2 * max_distance + 1
intensities = rgb2gray(image) * 255
out_channels = patch_size * patch_size
w = np.eye(out_channels).reshape(out_channels, 1, patch_size, patch_size)
weights = torch.from_numpy(w).float().to(device)
patches = F.conv2d(intensities, weights, stride=1, padding=1)
transf = patches - intensities
transf_norm = transf / torch.sqrt(0.81 + torch.square(transf))
return transf_norm
def hamming_distance(t1, t2):
dist = torch.square(t1 - t2)
dist_norm = dist / (0.1 + dist)
dist_sum = torch.sum(dist_norm, dim=1, keepdim=True)
return dist_sum
def create_mask(mask, paddings):
"""
padding: [[top, bottom], [left, right]]
"""
shape = mask.shape
inner_height = shape[2] - (paddings[0][0] + paddings[0][1])
inner_width = shape[3] - (paddings[1][0] + paddings[1][1])
inner = torch.ones([inner_height, inner_width])
mask2d = F.pad(inner, pad=[paddings[1][0], paddings[1][1], paddings[0][0], paddings[0][1]])
mask3d = mask2d.unsqueeze(0)
mask4d = mask3d.unsqueeze(0).repeat(shape[0], 1, 1, 1)
return mask4d.detach()
def ternary_loss2(frame1, warp_frame21, confMask, masks, max_distance=1):
"""
Args:
frame1: torch tensor, with shape [b * t, c, h, w]
warp_frame21: torch tensor, with shape [b * t, c, h, w]
confMask: confidence mask, with shape [b * t, c, h, w]
masks: torch tensor, with shape [b * t, c, h, w]
max_distance: maximum distance.
Returns: ternary loss
"""
t1 = ternary_transform(frame1)
t21 = ternary_transform(warp_frame21)
dist = hamming_distance(t1, t21)
loss = torch.mean(dist * confMask * masks) / torch.mean(masks)
return loss