Spaces:
Running
on
A10G
Running
on
A10G
import logging | |
from omegaconf import DictConfig | |
from typing import List, Dict | |
import torch | |
from tracker.inference.object_manager import ObjectManager | |
from tracker.inference.kv_memory_store import KeyValueMemoryStore | |
from tracker.model.cutie import CUTIE | |
from tracker.model.utils.memory_utils import * | |
log = logging.getLogger() | |
class MemoryManager: | |
""" | |
Manages all three memory stores and the transition between working/long-term memory | |
""" | |
def __init__(self, cfg: DictConfig, object_manager: ObjectManager): | |
self.object_manager = object_manager | |
self.sensory_dim = cfg.model.sensory_dim | |
self.top_k = cfg.top_k | |
self.chunk_size = cfg.chunk_size | |
self.save_aux = cfg.save_aux | |
self.use_long_term = cfg.use_long_term | |
self.count_long_term_usage = cfg.long_term.count_usage | |
# subtract 1 because the first-frame is now counted as "permanent memory" | |
# and is not counted towards max_mem_frames | |
# but we want to keep the hyperparameters consistent as before for the same behavior | |
if self.use_long_term: | |
self.max_mem_frames = cfg.long_term.max_mem_frames - 1 | |
self.min_mem_frames = cfg.long_term.min_mem_frames - 1 | |
self.num_prototypes = cfg.long_term.num_prototypes | |
self.max_long_tokens = cfg.long_term.max_num_tokens | |
self.buffer_tokens = cfg.long_term.buffer_tokens | |
else: | |
self.max_mem_frames = cfg.max_mem_frames - 1 | |
# dimensions will be inferred from input later | |
self.CK = self.CV = None | |
self.H = self.W = None | |
# The sensory memory is stored as a dictionary indexed by object ids | |
# each of shape bs * C^h * H * W | |
self.sensory = {} | |
# a dictionary indexed by object ids, each of shape bs * T * Q * C | |
self.obj_v = {} | |
self.work_mem = KeyValueMemoryStore(save_selection=self.use_long_term, | |
save_usage=self.use_long_term) | |
if self.use_long_term: | |
self.long_mem = KeyValueMemoryStore(save_usage=self.count_long_term_usage) | |
self.config_stale = True | |
self.engaged = False | |
def update_config(self, cfg: DictConfig) -> None: | |
self.config_stale = True | |
self.top_k = cfg['top_k'] | |
assert self.use_long_term == cfg.use_long_term, 'cannot update this' | |
assert self.count_long_term_usage == cfg.long_term.count_usage, 'cannot update this' | |
self.use_long_term = cfg.use_long_term | |
self.count_long_term_usage = cfg.long_term.count_usage | |
if self.use_long_term: | |
self.max_mem_frames = cfg.long_term.max_mem_frames - 1 | |
self.min_mem_frames = cfg.long_term.min_mem_frames - 1 | |
self.num_prototypes = cfg.long_term.num_prototypes | |
self.max_long_tokens = cfg.long_term.max_num_tokens | |
self.buffer_tokens = cfg.long_term.buffer_tokens | |
else: | |
self.max_mem_frames = cfg.max_mem_frames - 1 | |
def _readout(self, affinity, v) -> torch.Tensor: | |
# affinity: bs*N*HW | |
# v: bs*C*N or bs*num_objects*C*N | |
# returns bs*C*HW or bs*num_objects*C*HW | |
if len(v.shape) == 3: | |
# single object | |
return v @ affinity | |
else: | |
bs, num_objects, C, N = v.shape | |
v = v.view(bs, num_objects * C, N) | |
out = v @ affinity | |
return out.view(bs, num_objects, C, -1) | |
def _get_mask_by_ids(self, mask: torch.Tensor, obj_ids: List[int]) -> torch.Tensor: | |
# -1 because the mask does not contain the background channel | |
return mask[:, [self.object_manager.find_tmp_by_id(obj) - 1 for obj in obj_ids]] | |
def _get_sensory_by_ids(self, obj_ids: List[int]) -> torch.Tensor: | |
return torch.stack([self.sensory[obj] for obj in obj_ids], dim=1) | |
def _get_object_mem_by_ids(self, obj_ids: List[int]) -> torch.Tensor: | |
return torch.stack([self.obj_v[obj] for obj in obj_ids], dim=1) | |
def _get_visual_values_by_ids(self, obj_ids: List[int]) -> torch.Tensor: | |
# All the values that the object ids refer to should have the same shape | |
value = torch.stack([self.work_mem.value[obj] for obj in obj_ids], dim=1) | |
if self.use_long_term and obj_ids[0] in self.long_mem.value: | |
lt_value = torch.stack([self.long_mem.value[obj] for obj in obj_ids], dim=1) | |
value = torch.cat([lt_value, value], dim=-1) | |
return value | |
def read(self, pix_feat: torch.Tensor, query_key: torch.Tensor, selection: torch.Tensor, | |
last_mask: torch.Tensor, network: CUTIE) -> Dict[int, torch.Tensor]: | |
""" | |
Read from all memory stores and returns a single memory readout tensor for each object | |
pix_feat: (1/2) x C x H x W | |
query_key: (1/2) x C^k x H x W | |
selection: (1/2) x C^k x H x W | |
last_mask: (1/2) x num_objects x H x W (at stride 16) | |
return a dict of memory readouts, indexed by object indices. Each readout is C*H*W | |
""" | |
h, w = pix_feat.shape[-2:] | |
bs = pix_feat.shape[0] | |
assert query_key.shape[0] == bs | |
assert selection.shape[0] == bs | |
assert last_mask.shape[0] == bs | |
query_key = query_key.flatten(start_dim=2) # bs*C^k*HW | |
selection = selection.flatten(start_dim=2) # bs*C^k*HW | |
""" | |
Compute affinity and perform readout | |
""" | |
all_readout_mem = {} | |
buckets = self.work_mem.buckets | |
for bucket_id, bucket in buckets.items(): | |
if self.use_long_term and self.long_mem.engaged(bucket_id): | |
# Use long-term memory | |
long_mem_size = self.long_mem.size(bucket_id) | |
memory_key = torch.cat([self.long_mem.key[bucket_id], self.work_mem.key[bucket_id]], | |
-1) | |
shrinkage = torch.cat( | |
[self.long_mem.shrinkage[bucket_id], self.work_mem.shrinkage[bucket_id]], -1) | |
similarity = get_similarity(memory_key, shrinkage, query_key, selection) | |
affinity, usage = do_softmax(similarity, | |
top_k=self.top_k, | |
inplace=True, | |
return_usage=True) | |
""" | |
Record memory usage for working and long-term memory | |
""" | |
# ignore the index return for long-term memory | |
work_usage = usage[:, long_mem_size:] | |
self.work_mem.update_bucket_usage(bucket_id, work_usage) | |
if self.count_long_term_usage: | |
# ignore the index return for working memory | |
long_usage = usage[:, :long_mem_size] | |
self.long_mem.update_bucket_usage(bucket_id, long_usage) | |
else: | |
# no long-term memory | |
memory_key = self.work_mem.key[bucket_id] | |
shrinkage = self.work_mem.shrinkage[bucket_id] | |
similarity = get_similarity(memory_key, shrinkage, query_key, selection) | |
if self.use_long_term: | |
affinity, usage = do_softmax(similarity, | |
top_k=self.top_k, | |
inplace=True, | |
return_usage=True) | |
self.work_mem.update_bucket_usage(bucket_id, usage) | |
else: | |
affinity = do_softmax(similarity, top_k=self.top_k, inplace=True) | |
if self.chunk_size < 1: | |
object_chunks = [bucket] | |
else: | |
object_chunks = [ | |
bucket[i:i + self.chunk_size] for i in range(0, len(bucket), self.chunk_size) | |
] | |
for objects in object_chunks: | |
this_sensory = self._get_sensory_by_ids(objects) | |
this_last_mask = self._get_mask_by_ids(last_mask, objects) | |
this_msk_value = self._get_visual_values_by_ids(objects) # (1/2)*num_objects*C*N | |
visual_readout = self._readout(affinity, | |
this_msk_value).view(bs, len(objects), self.CV, h, w) | |
pixel_readout = network.pixel_fusion(pix_feat, visual_readout, this_sensory, | |
this_last_mask) | |
this_obj_mem = self._get_object_mem_by_ids(objects).unsqueeze(2) | |
readout_memory, aux_features = network.readout_query(pixel_readout, this_obj_mem) | |
for i, obj in enumerate(objects): | |
all_readout_mem[obj] = readout_memory[:, i] | |
if self.save_aux: | |
aux_output = { | |
'sensory': this_sensory, | |
'pixel_readout': pixel_readout, | |
'q_logits': aux_features['logits'] if aux_features else None, | |
'q_weights': aux_features['q_weights'] if aux_features else None, | |
'p_weights': aux_features['p_weights'] if aux_features else None, | |
'attn_mask': aux_features['attn_mask'].float() if aux_features else None, | |
} | |
self.aux = aux_output | |
return all_readout_mem | |
def add_memory(self, | |
key: torch.Tensor, | |
shrinkage: torch.Tensor, | |
msk_value: torch.Tensor, | |
obj_value: torch.Tensor, | |
objects: List[int], | |
selection: torch.Tensor = None, | |
*, | |
as_permanent: bool = False) -> None: | |
# key: (1/2)*C*H*W | |
# msk_value: (1/2)*num_objects*C*H*W | |
# obj_value: (1/2)*num_objects*Q*C | |
# objects contains a list of object ids corresponding to the objects in msk_value/obj_value | |
bs = key.shape[0] | |
assert shrinkage.shape[0] == bs | |
assert msk_value.shape[0] == bs | |
assert obj_value.shape[0] == bs | |
self.engaged = True | |
if self.H is None or self.config_stale: | |
self.config_stale = False | |
self.H, self.W = msk_value.shape[-2:] | |
self.HW = self.H * self.W | |
# convert from num. frames to num. tokens | |
self.max_work_tokens = self.max_mem_frames * self.HW | |
if self.use_long_term: | |
self.min_work_tokens = self.min_mem_frames * self.HW | |
# key: bs*C*N | |
# value: bs*num_objects*C*N | |
key = key.flatten(start_dim=2) | |
shrinkage = shrinkage.flatten(start_dim=2) | |
self.CK = key.shape[1] | |
msk_value = msk_value.flatten(start_dim=3) | |
self.CV = msk_value.shape[2] | |
if selection is not None: | |
# not used in non-long-term mode | |
selection = selection.flatten(start_dim=2) | |
# insert object values into object memory | |
for obj_id, obj in enumerate(objects): | |
if obj in self.obj_v: | |
"""streaming average | |
each self.obj_v[obj] is (1/2)*num_summaries*(embed_dim+1) | |
first embed_dim keeps track of the sum of embeddings | |
the last dim keeps the total count | |
averaging in done inside the object transformer | |
incoming obj_value is (1/2)*num_objects*num_summaries*(embed_dim+1) | |
self.obj_v[obj] = torch.cat([self.obj_v[obj], obj_value[:, obj_id]], dim=0) | |
""" | |
last_acc = self.obj_v[obj][:, :, -1] | |
new_acc = last_acc + obj_value[:, obj_id, :, -1] | |
self.obj_v[obj][:, :, :-1] = (self.obj_v[obj][:, :, :-1] + | |
obj_value[:, obj_id, :, :-1]) | |
self.obj_v[obj][:, :, -1] = new_acc | |
else: | |
self.obj_v[obj] = obj_value[:, obj_id] | |
# convert mask value tensor into a dict for insertion | |
msk_values = {obj: msk_value[:, obj_id] for obj_id, obj in enumerate(objects)} | |
self.work_mem.add(key, | |
msk_values, | |
shrinkage, | |
selection=selection, | |
as_permanent=as_permanent) | |
for bucket_id in self.work_mem.buckets.keys(): | |
# long-term memory cleanup | |
if self.use_long_term: | |
# Do memory compressed if needed | |
if self.work_mem.non_perm_size(bucket_id) >= self.max_work_tokens: | |
# Remove obsolete features if needed | |
if self.long_mem.non_perm_size(bucket_id) >= (self.max_long_tokens - | |
self.num_prototypes): | |
self.long_mem.remove_obsolete_features( | |
bucket_id, | |
self.max_long_tokens - self.num_prototypes - self.buffer_tokens) | |
self.compress_features(bucket_id) | |
else: | |
# FIFO | |
self.work_mem.remove_old_memory(bucket_id, self.max_work_tokens) | |
def purge_except(self, obj_keep_idx: List[int]) -> None: | |
# purge certain objects from the memory except the one listed | |
self.work_mem.purge_except(obj_keep_idx) | |
if self.use_long_term and self.long_mem.engaged(): | |
self.long_mem.purge_except(obj_keep_idx) | |
self.sensory = {k: v for k, v in self.sensory.items() if k in obj_keep_idx} | |
if not self.work_mem.engaged(): | |
# everything is removed! | |
self.engaged = False | |
def compress_features(self, bucket_id: int) -> None: | |
HW = self.HW | |
# perform memory consolidation | |
prototype_key, prototype_value, prototype_shrinkage = self.consolidation( | |
*self.work_mem.get_all_sliced(bucket_id, 0, -self.min_work_tokens)) | |
# remove consolidated working memory | |
self.work_mem.sieve_by_range(bucket_id, | |
0, | |
-self.min_work_tokens, | |
min_size=self.min_work_tokens) | |
# add to long-term memory | |
self.long_mem.add(prototype_key, | |
prototype_value, | |
prototype_shrinkage, | |
selection=None, | |
supposed_bucket_id=bucket_id) | |
def consolidation(self, candidate_key: torch.Tensor, candidate_shrinkage: torch.Tensor, | |
candidate_selection: torch.Tensor, candidate_value: Dict[int, torch.Tensor], | |
usage: torch.Tensor) -> (torch.Tensor, Dict[int, torch.Tensor], torch.Tensor): | |
# find the indices with max usage | |
bs = candidate_key.shape[0] | |
assert bs in [1, 2] | |
prototype_key = [] | |
prototype_selection = [] | |
for bi in range(bs): | |
_, max_usage_indices = torch.topk(usage[bi], k=self.num_prototypes, dim=-1, sorted=True) | |
prototype_indices = max_usage_indices.flatten() | |
prototype_key.append(candidate_key[bi, :, prototype_indices]) | |
prototype_selection.append(candidate_selection[bi, :, prototype_indices]) | |
prototype_key = torch.stack(prototype_key, dim=0) | |
prototype_selection = torch.stack(prototype_selection, dim=0) | |
""" | |
Potentiation step | |
""" | |
similarity = get_similarity(candidate_key, candidate_shrinkage, prototype_key, | |
prototype_selection) | |
affinity = do_softmax(similarity) | |
# readout the values | |
prototype_value = {k: self._readout(affinity, v) for k, v in candidate_value.items()} | |
# readout the shrinkage term | |
prototype_shrinkage = self._readout(affinity, candidate_shrinkage) | |
return prototype_key, prototype_value, prototype_shrinkage | |
def initialize_sensory_if_needed(self, sample_key: torch.Tensor, ids: List[int]): | |
for obj in ids: | |
if obj not in self.sensory: | |
# also initializes the sensory memory | |
bs, _, h, w = sample_key.shape | |
self.sensory[obj] = torch.zeros((bs, self.sensory_dim, h, w), | |
device=sample_key.device) | |
def update_sensory(self, sensory: torch.Tensor, ids: List[int]): | |
# sensory: 1*num_objects*C*H*W | |
for obj_id, obj in enumerate(ids): | |
self.sensory[obj] = sensory[:, obj_id] | |
def get_sensory(self, ids: List[int]): | |
# returns (1/2)*num_objects*C*H*W | |
return self._get_sensory_by_ids(ids) | |
def clear_non_permanent_memory(self): | |
self.work_mem.clear_non_permanent_memory() | |
if self.use_long_term: | |
self.long_mem.clear_non_permanent_memory() | |
def clear_sensory_memory(self): | |
self.sensory = {} | |