sczhou's picture
init code
320e465
raw
history blame
17 kB
import logging
from omegaconf import DictConfig
from typing import List, Dict
import torch
from tracker.inference.object_manager import ObjectManager
from tracker.inference.kv_memory_store import KeyValueMemoryStore
from tracker.model.cutie import CUTIE
from tracker.model.utils.memory_utils import *
log = logging.getLogger()
class MemoryManager:
"""
Manages all three memory stores and the transition between working/long-term memory
"""
def __init__(self, cfg: DictConfig, object_manager: ObjectManager):
self.object_manager = object_manager
self.sensory_dim = cfg.model.sensory_dim
self.top_k = cfg.top_k
self.chunk_size = cfg.chunk_size
self.save_aux = cfg.save_aux
self.use_long_term = cfg.use_long_term
self.count_long_term_usage = cfg.long_term.count_usage
# subtract 1 because the first-frame is now counted as "permanent memory"
# and is not counted towards max_mem_frames
# but we want to keep the hyperparameters consistent as before for the same behavior
if self.use_long_term:
self.max_mem_frames = cfg.long_term.max_mem_frames - 1
self.min_mem_frames = cfg.long_term.min_mem_frames - 1
self.num_prototypes = cfg.long_term.num_prototypes
self.max_long_tokens = cfg.long_term.max_num_tokens
self.buffer_tokens = cfg.long_term.buffer_tokens
else:
self.max_mem_frames = cfg.max_mem_frames - 1
# dimensions will be inferred from input later
self.CK = self.CV = None
self.H = self.W = None
# The sensory memory is stored as a dictionary indexed by object ids
# each of shape bs * C^h * H * W
self.sensory = {}
# a dictionary indexed by object ids, each of shape bs * T * Q * C
self.obj_v = {}
self.work_mem = KeyValueMemoryStore(save_selection=self.use_long_term,
save_usage=self.use_long_term)
if self.use_long_term:
self.long_mem = KeyValueMemoryStore(save_usage=self.count_long_term_usage)
self.config_stale = True
self.engaged = False
def update_config(self, cfg: DictConfig) -> None:
self.config_stale = True
self.top_k = cfg['top_k']
assert self.use_long_term == cfg.use_long_term, 'cannot update this'
assert self.count_long_term_usage == cfg.long_term.count_usage, 'cannot update this'
self.use_long_term = cfg.use_long_term
self.count_long_term_usage = cfg.long_term.count_usage
if self.use_long_term:
self.max_mem_frames = cfg.long_term.max_mem_frames - 1
self.min_mem_frames = cfg.long_term.min_mem_frames - 1
self.num_prototypes = cfg.long_term.num_prototypes
self.max_long_tokens = cfg.long_term.max_num_tokens
self.buffer_tokens = cfg.long_term.buffer_tokens
else:
self.max_mem_frames = cfg.max_mem_frames - 1
def _readout(self, affinity, v) -> torch.Tensor:
# affinity: bs*N*HW
# v: bs*C*N or bs*num_objects*C*N
# returns bs*C*HW or bs*num_objects*C*HW
if len(v.shape) == 3:
# single object
return v @ affinity
else:
bs, num_objects, C, N = v.shape
v = v.view(bs, num_objects * C, N)
out = v @ affinity
return out.view(bs, num_objects, C, -1)
def _get_mask_by_ids(self, mask: torch.Tensor, obj_ids: List[int]) -> torch.Tensor:
# -1 because the mask does not contain the background channel
return mask[:, [self.object_manager.find_tmp_by_id(obj) - 1 for obj in obj_ids]]
def _get_sensory_by_ids(self, obj_ids: List[int]) -> torch.Tensor:
return torch.stack([self.sensory[obj] for obj in obj_ids], dim=1)
def _get_object_mem_by_ids(self, obj_ids: List[int]) -> torch.Tensor:
return torch.stack([self.obj_v[obj] for obj in obj_ids], dim=1)
def _get_visual_values_by_ids(self, obj_ids: List[int]) -> torch.Tensor:
# All the values that the object ids refer to should have the same shape
value = torch.stack([self.work_mem.value[obj] for obj in obj_ids], dim=1)
if self.use_long_term and obj_ids[0] in self.long_mem.value:
lt_value = torch.stack([self.long_mem.value[obj] for obj in obj_ids], dim=1)
value = torch.cat([lt_value, value], dim=-1)
return value
def read(self, pix_feat: torch.Tensor, query_key: torch.Tensor, selection: torch.Tensor,
last_mask: torch.Tensor, network: CUTIE) -> Dict[int, torch.Tensor]:
"""
Read from all memory stores and returns a single memory readout tensor for each object
pix_feat: (1/2) x C x H x W
query_key: (1/2) x C^k x H x W
selection: (1/2) x C^k x H x W
last_mask: (1/2) x num_objects x H x W (at stride 16)
return a dict of memory readouts, indexed by object indices. Each readout is C*H*W
"""
h, w = pix_feat.shape[-2:]
bs = pix_feat.shape[0]
assert query_key.shape[0] == bs
assert selection.shape[0] == bs
assert last_mask.shape[0] == bs
query_key = query_key.flatten(start_dim=2) # bs*C^k*HW
selection = selection.flatten(start_dim=2) # bs*C^k*HW
"""
Compute affinity and perform readout
"""
all_readout_mem = {}
buckets = self.work_mem.buckets
for bucket_id, bucket in buckets.items():
if self.use_long_term and self.long_mem.engaged(bucket_id):
# Use long-term memory
long_mem_size = self.long_mem.size(bucket_id)
memory_key = torch.cat([self.long_mem.key[bucket_id], self.work_mem.key[bucket_id]],
-1)
shrinkage = torch.cat(
[self.long_mem.shrinkage[bucket_id], self.work_mem.shrinkage[bucket_id]], -1)
similarity = get_similarity(memory_key, shrinkage, query_key, selection)
affinity, usage = do_softmax(similarity,
top_k=self.top_k,
inplace=True,
return_usage=True)
"""
Record memory usage for working and long-term memory
"""
# ignore the index return for long-term memory
work_usage = usage[:, long_mem_size:]
self.work_mem.update_bucket_usage(bucket_id, work_usage)
if self.count_long_term_usage:
# ignore the index return for working memory
long_usage = usage[:, :long_mem_size]
self.long_mem.update_bucket_usage(bucket_id, long_usage)
else:
# no long-term memory
memory_key = self.work_mem.key[bucket_id]
shrinkage = self.work_mem.shrinkage[bucket_id]
similarity = get_similarity(memory_key, shrinkage, query_key, selection)
if self.use_long_term:
affinity, usage = do_softmax(similarity,
top_k=self.top_k,
inplace=True,
return_usage=True)
self.work_mem.update_bucket_usage(bucket_id, usage)
else:
affinity = do_softmax(similarity, top_k=self.top_k, inplace=True)
if self.chunk_size < 1:
object_chunks = [bucket]
else:
object_chunks = [
bucket[i:i + self.chunk_size] for i in range(0, len(bucket), self.chunk_size)
]
for objects in object_chunks:
this_sensory = self._get_sensory_by_ids(objects)
this_last_mask = self._get_mask_by_ids(last_mask, objects)
this_msk_value = self._get_visual_values_by_ids(objects) # (1/2)*num_objects*C*N
visual_readout = self._readout(affinity,
this_msk_value).view(bs, len(objects), self.CV, h, w)
pixel_readout = network.pixel_fusion(pix_feat, visual_readout, this_sensory,
this_last_mask)
this_obj_mem = self._get_object_mem_by_ids(objects).unsqueeze(2)
readout_memory, aux_features = network.readout_query(pixel_readout, this_obj_mem)
for i, obj in enumerate(objects):
all_readout_mem[obj] = readout_memory[:, i]
if self.save_aux:
aux_output = {
'sensory': this_sensory,
'pixel_readout': pixel_readout,
'q_logits': aux_features['logits'] if aux_features else None,
'q_weights': aux_features['q_weights'] if aux_features else None,
'p_weights': aux_features['p_weights'] if aux_features else None,
'attn_mask': aux_features['attn_mask'].float() if aux_features else None,
}
self.aux = aux_output
return all_readout_mem
def add_memory(self,
key: torch.Tensor,
shrinkage: torch.Tensor,
msk_value: torch.Tensor,
obj_value: torch.Tensor,
objects: List[int],
selection: torch.Tensor = None,
*,
as_permanent: bool = False) -> None:
# key: (1/2)*C*H*W
# msk_value: (1/2)*num_objects*C*H*W
# obj_value: (1/2)*num_objects*Q*C
# objects contains a list of object ids corresponding to the objects in msk_value/obj_value
bs = key.shape[0]
assert shrinkage.shape[0] == bs
assert msk_value.shape[0] == bs
assert obj_value.shape[0] == bs
self.engaged = True
if self.H is None or self.config_stale:
self.config_stale = False
self.H, self.W = msk_value.shape[-2:]
self.HW = self.H * self.W
# convert from num. frames to num. tokens
self.max_work_tokens = self.max_mem_frames * self.HW
if self.use_long_term:
self.min_work_tokens = self.min_mem_frames * self.HW
# key: bs*C*N
# value: bs*num_objects*C*N
key = key.flatten(start_dim=2)
shrinkage = shrinkage.flatten(start_dim=2)
self.CK = key.shape[1]
msk_value = msk_value.flatten(start_dim=3)
self.CV = msk_value.shape[2]
if selection is not None:
# not used in non-long-term mode
selection = selection.flatten(start_dim=2)
# insert object values into object memory
for obj_id, obj in enumerate(objects):
if obj in self.obj_v:
"""streaming average
each self.obj_v[obj] is (1/2)*num_summaries*(embed_dim+1)
first embed_dim keeps track of the sum of embeddings
the last dim keeps the total count
averaging in done inside the object transformer
incoming obj_value is (1/2)*num_objects*num_summaries*(embed_dim+1)
self.obj_v[obj] = torch.cat([self.obj_v[obj], obj_value[:, obj_id]], dim=0)
"""
last_acc = self.obj_v[obj][:, :, -1]
new_acc = last_acc + obj_value[:, obj_id, :, -1]
self.obj_v[obj][:, :, :-1] = (self.obj_v[obj][:, :, :-1] +
obj_value[:, obj_id, :, :-1])
self.obj_v[obj][:, :, -1] = new_acc
else:
self.obj_v[obj] = obj_value[:, obj_id]
# convert mask value tensor into a dict for insertion
msk_values = {obj: msk_value[:, obj_id] for obj_id, obj in enumerate(objects)}
self.work_mem.add(key,
msk_values,
shrinkage,
selection=selection,
as_permanent=as_permanent)
for bucket_id in self.work_mem.buckets.keys():
# long-term memory cleanup
if self.use_long_term:
# Do memory compressed if needed
if self.work_mem.non_perm_size(bucket_id) >= self.max_work_tokens:
# Remove obsolete features if needed
if self.long_mem.non_perm_size(bucket_id) >= (self.max_long_tokens -
self.num_prototypes):
self.long_mem.remove_obsolete_features(
bucket_id,
self.max_long_tokens - self.num_prototypes - self.buffer_tokens)
self.compress_features(bucket_id)
else:
# FIFO
self.work_mem.remove_old_memory(bucket_id, self.max_work_tokens)
def purge_except(self, obj_keep_idx: List[int]) -> None:
# purge certain objects from the memory except the one listed
self.work_mem.purge_except(obj_keep_idx)
if self.use_long_term and self.long_mem.engaged():
self.long_mem.purge_except(obj_keep_idx)
self.sensory = {k: v for k, v in self.sensory.items() if k in obj_keep_idx}
if not self.work_mem.engaged():
# everything is removed!
self.engaged = False
def compress_features(self, bucket_id: int) -> None:
HW = self.HW
# perform memory consolidation
prototype_key, prototype_value, prototype_shrinkage = self.consolidation(
*self.work_mem.get_all_sliced(bucket_id, 0, -self.min_work_tokens))
# remove consolidated working memory
self.work_mem.sieve_by_range(bucket_id,
0,
-self.min_work_tokens,
min_size=self.min_work_tokens)
# add to long-term memory
self.long_mem.add(prototype_key,
prototype_value,
prototype_shrinkage,
selection=None,
supposed_bucket_id=bucket_id)
def consolidation(self, candidate_key: torch.Tensor, candidate_shrinkage: torch.Tensor,
candidate_selection: torch.Tensor, candidate_value: Dict[int, torch.Tensor],
usage: torch.Tensor) -> (torch.Tensor, Dict[int, torch.Tensor], torch.Tensor):
# find the indices with max usage
bs = candidate_key.shape[0]
assert bs in [1, 2]
prototype_key = []
prototype_selection = []
for bi in range(bs):
_, max_usage_indices = torch.topk(usage[bi], k=self.num_prototypes, dim=-1, sorted=True)
prototype_indices = max_usage_indices.flatten()
prototype_key.append(candidate_key[bi, :, prototype_indices])
prototype_selection.append(candidate_selection[bi, :, prototype_indices])
prototype_key = torch.stack(prototype_key, dim=0)
prototype_selection = torch.stack(prototype_selection, dim=0)
"""
Potentiation step
"""
similarity = get_similarity(candidate_key, candidate_shrinkage, prototype_key,
prototype_selection)
affinity = do_softmax(similarity)
# readout the values
prototype_value = {k: self._readout(affinity, v) for k, v in candidate_value.items()}
# readout the shrinkage term
prototype_shrinkage = self._readout(affinity, candidate_shrinkage)
return prototype_key, prototype_value, prototype_shrinkage
def initialize_sensory_if_needed(self, sample_key: torch.Tensor, ids: List[int]):
for obj in ids:
if obj not in self.sensory:
# also initializes the sensory memory
bs, _, h, w = sample_key.shape
self.sensory[obj] = torch.zeros((bs, self.sensory_dim, h, w),
device=sample_key.device)
def update_sensory(self, sensory: torch.Tensor, ids: List[int]):
# sensory: 1*num_objects*C*H*W
for obj_id, obj in enumerate(ids):
self.sensory[obj] = sensory[:, obj_id]
def get_sensory(self, ids: List[int]):
# returns (1/2)*num_objects*C*H*W
return self._get_sensory_by_ids(ids)
def clear_non_permanent_memory(self):
self.work_mem.clear_non_permanent_memory()
if self.use_long_term:
self.long_mem.clear_non_permanent_memory()
def clear_sensory_memory(self):
self.sensory = {}