sczhou's picture
init code
320e465
raw
history blame
32.5 kB
import sys
sys.path.append("../../")
import os
import json
import time
import psutil
import argparse
import cv2
import torch
import torchvision
import numpy as np
import gradio as gr
from tools.painter import mask_painter
from track_anything import TrackingAnything
from model.misc import get_device
from utils.download_util import load_file_from_url
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")
parser.add_argument('--mask_save', default=False)
args = parser.parse_args()
if not args.device:
args.device = str(get_device())
return args
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
frames = []
user_name = time.time()
operation_log = [("",""),("Video uploaded! Try to click the image shown in step2 to add masks.","Normal")]
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
current_memory_usage = psutil.virtual_memory().percent
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# if current_memory_usage > 90:
# operation_log = [("Memory usage is too high (>90%). Stop the video extraction. Please reduce the video resolution or frame rate.", "Error")]
# print("Memory usage is too high (>90%). Please reduce the video resolution or frame rate.")
# break
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"fps": fps
}
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
return video_state, video_info, video_state["origin_images"][0], gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True, choices=[], value=[]), \
gr.update(visible=True, value=operation_log), gr.update(visible=True, value=operation_log)
# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown):
# images = video_state[1]
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
operation_log = [("",""), ("Select tracking start frame {}. Try to click the image to add masks for tracking.".format(image_selection_slider),"Normal")]
return video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, operation_log
# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
operation_log = [("",""),("Select tracking finish frame {}.Try to click the image to add masks for tracking.".format(track_pause_number_slider),"Normal")]
return video_state["painted_images"][track_pause_number_slider],interactive_state, operation_log, operation_log
# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
operation_log = [("",""), ("You can try to add positive or negative points by clicking, click Clear clicks button to refresh the image, click Add mask button when you are satisfied with the segment, or click Remove mask button to remove all added masks.","Normal")]
return painted_image, video_state, interactive_state, operation_log, operation_log
def add_multi_mask(video_state, interactive_state, mask_dropdown):
try:
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
select_frame, _, _ = show_mask(video_state, interactive_state, mask_dropdown)
operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")]
except:
operation_log = [("Please click the image in step2 to generate masks.", "Error"), ("","")]
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log, operation_log
def clear_click(video_state, click_state):
click_state = [[],[]]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
operation_log = [("",""), ("Cleared points history and refresh the image.","Normal")]
return template_frame, click_state, operation_log, operation_log
def remove_multi_mask(interactive_state, mask_dropdown):
interactive_state["multi_mask"]["mask_names"]= []
interactive_state["multi_mask"]["masks"] = []
operation_log = [("",""), ("Remove all masks. Try to add new masks","Normal")]
return interactive_state, gr.update(choices=[],value=[]), operation_log, operation_log
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
operation_log = [("",""), ("Added masks {}. If you want to do the inpainting with current masks, please go to step3, and click the Tracking button first and then Inpainting button.".format(mask_dropdown),"Normal")]
return select_frame, operation_log, operation_log
# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
operation_log = [("",""), ("Tracking finished! Try to click the Inpainting button to get the inpainting result.","Normal")]
model.cutie.clear_memory()
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
else:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = video_state["fps"]
# operation error
if len(np.unique(template_mask))==1:
template_mask[0][0]=1
operation_log = [("Please add at least one mask to track by clicking the image in step2.","Error"), ("","")]
# return video_output, video_state, interactive_state, operation_error
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
# clear GPU memory
model.cutie.clear_memory()
if interactive_state["track_end_number"]:
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
else:
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
interactive_state["inference_times"] += 1
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"],
interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
interactive_state["positive_click_times"],
interactive_state["negative_click_times"]))
#### shanggao code for mask save
if interactive_state["mask_save"]:
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0]))
i = 0
print("save mask")
for mask in video_state["masks"]:
np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask)
i+=1
# save_mask(video_state["masks"], video_state["video_name"])
#### shanggao code for mask save
return video_output, video_state, interactive_state, operation_log, operation_log
# inpaint
def inpaint_video(video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown):
operation_log = [("",""), ("Inpainting finished!","Normal")]
frames = np.asarray(video_state["origin_images"])
fps = video_state["fps"]
inpaint_masks = np.asarray(video_state["masks"])
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
# convert mask_dropdown to mask numbers
inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))]
# interate through all masks and remove the masks that are not in mask_dropdown
unique_masks = np.unique(inpaint_masks)
num_masks = len(unique_masks) - 1
for i in range(1, num_masks + 1):
if i in inpaint_mask_numbers:
continue
inpaint_masks[inpaint_masks==i] = 0
# inpaint for videos
inpainted_frames = model.baseinpainter.inpaint(frames,
inpaint_masks,
ratio=resize_ratio_number,
dilate_radius=dilate_radius_number,
raft_iter=raft_iter_number,
subvideo_length=subvideo_length_number,
neighbor_length=neighbor_length_number,
ref_stride=ref_stride_number) # numpy array, T, H, W, 3
video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
return video_output, operation_log, operation_log
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
frames = torch.from_numpy(np.asarray(frames))
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
def restart():
operation_log = [("",""), ("Try to upload your video and click the Get video info button to get started!", "Normal")]
return {
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}, {
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}, [[],[]], None, None, None, \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", \
gr.update(visible=True, value=operation_log), gr.update(visible=False, value=operation_log)
# args, defined in track_anything.py
args = parse_augment()
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
sam_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_fodler = os.path.join('..', '..', 'weights')
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_fodler)
cutie_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'cutie-base-mega.pth'), checkpoint_fodler)
propainter_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'ProPainter.pth'), checkpoint_fodler)
raft_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'raft-things.pth'), checkpoint_fodler)
flow_completion_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), checkpoint_fodler)
# initialize sam, cutie, propainter models
model = TrackingAnything(sam_checkpoint, cutie_checkpoint, propainter_checkpoint, raft_checkpoint, flow_completion_checkpoint, args)
title = r"""<h1 align="center">ProPainter: Improving Propagation and Transformer for Video Inpainting</h1>"""
description = r"""
<center><img src='https://github.com/sczhou/ProPainter/raw/main/assets/propainter_logo1_glow.png' alt='Propainter logo' style="width:180px; margin-bottom:20px"></center>
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/ProPainter' target='_blank'><b>Improving Propagation and Transformer for Video Inpainting (ICCV 2023)</b></a>.<br>
πŸ”₯ Propainter is a robust inpainting algorithm.<br>
πŸ€— Try to drop your video, add the masks and get the the inpainting results!<br>
"""
article = r"""
If ProPainter is helpful, please help to ⭐ the <a href='https://github.com/sczhou/ProPainter' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/ProPainter?style=social)](https://github.com/sczhou/ProPainter)
---
πŸ“ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{zhou2023propainter,
title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting},
author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change},
booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)},
year={2023}
}
```
πŸ“‹ **License**
<br>
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>shangchenzhou@gmail.com</b>.
<div>
πŸ€— Find Me:
<a href="https://twitter.com/ShangchenZhou"><img style="margin-top:0.5em; margin-bottom:0.5em" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a>
<a href="https://github.com/sczhou"><img style="margin-top:0.5em; margin-bottom:2em" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a>
</div>
"""
css = """
.gradio-container {width: 85% !important}
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important}
button {border-radius: 8px !important;}
.add_button {background-color: #4CAF50 !important;}
.remove_button {background-color: #f44336 !important;}
.mask_button_group {gap: 10px !important;}
.video {height: 300px !important;}
.image {height: 300px !important;}
.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;}
.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;}
.margin_center {width: 50% !important; margin: auto !important;}
.jc_center {justify-content: center !important;}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as iface:
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}
)
video_state = gr.State(
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}
)
gr.Markdown(title)
gr.Markdown(description)
with gr.Group(elem_classes="gr-monochrome-group"):
with gr.Row():
with gr.Accordion('ProPainter Parameters', open=False):
with gr.Row():
resize_ratio_number = gr.Slider(label='Resize ratio',
minimum=0.01,
maximum=1.0,
step=0.01,
value=1.0)
raft_iter_number = gr.Slider(label='Iterations for RAFT inference.',
minimum=5,
maximum=20,
step=1,
value=20,)
with gr.Row():
dilate_radius_number = gr.Slider(label='Mask dilation for video and flow masking.',
minimum=0,
maximum=10,
step=1,
value=8,)
subvideo_length_number = gr.Slider(label='Length of sub-video for long video inference.',
minimum=40,
maximum=200,
step=1,
value=80,)
with gr.Row():
neighbor_length_number = gr.Slider(label='Length of local neighboring frames.',
minimum=5,
maximum=20,
step=1,
value=10,)
ref_stride_number = gr.Slider(label='Stride of global reference frames.',
minimum=5,
maximum=20,
step=1,
value=10,)
with gr.Column():
# input video
gr.Markdown("## Step1: Upload video")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
video_input = gr.Video(elem_classes="video")
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary")
with gr.Column(scale=2):
run_status = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get svideo info button to get started!", "Normal")])
video_info = gr.Textbox(label="Video Info")
# add masks
step2_title = gr.Markdown("---\n## Step2: Add masks", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
with gr.Column(scale=2, elem_classes="jc_center"):
run_status2 = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get svideo info button to get started!", "Normal")], visible=False)
with gr.Row():
with gr.Column(scale=2, elem_classes="mask_button_group"):
clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False)
remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False, elem_classes="remove_button")
Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False, elem_classes="add_button")
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point prompt",
interactive=True,
visible=False,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False)
# output video
step3_title = gr.Markdown("---\n## Step3: Track masks and get the inpainting result", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
tracking_video_output = gr.Video(visible=False, elem_classes="video")
tracking_video_predict_button = gr.Button(value="1. Tracking", visible=False, elem_classes="margin_center")
with gr.Column(scale=2):
inpaiting_video_output = gr.Video(visible=False, elem_classes="video")
inpaint_video_predict_button = gr.Button(value="2. Inpainting", visible=False, elem_classes="margin_center")
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[
video_input, video_state
],
outputs=[video_state, video_info, template_frame,
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame,
tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button, inpaint_video_predict_button, step2_title, step3_title,mask_dropdown, run_status, run_status2]
)
# second step: select images from slider
image_selection_slider.release(fn=select_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status, run_status2], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[template_frame, interactive_state, run_status, run_status2], api_name="end_image")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status, run_status2]
)
# add different mask
Add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status, run_status2]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, run_status, run_status2]
)
# tracking video from select image and mask
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[tracking_video_output, video_state, interactive_state, run_status, run_status2]
)
# inpaint video from select image and mask
inpaint_video_predict_button.click(
fn=inpaint_video,
inputs=[video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown],
outputs=[inpaiting_video_output, run_status, run_status2]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame, run_status, run_status2]
)
# clear input
video_input.change(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
tracking_video_output, inpaiting_video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
],
queue=False,
show_progress=False)
video_input.clear(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
tracking_video_output, inpaiting_video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
],
queue=False,
show_progress=False)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [video_state, click_state,],
outputs = [template_frame,click_state, run_status, run_status2],
)
# set example
gr.Markdown("## Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.mp4", "test-sample1.mp4", "test-sample2.mp4", "test-sample3.mp4", "test-sample4.mp4"]],
inputs=[video_input],
)
gr.Markdown(article)
iface.queue(concurrency_count=1)
iface.launch(debug=True)