Spaces:
Running
on
A10G
Running
on
A10G
import math | |
from functools import reduce | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SoftSplit(nn.Module): | |
def __init__(self, channel, hidden, kernel_size, stride, padding): | |
super(SoftSplit, self).__init__() | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.t2t = nn.Unfold(kernel_size=kernel_size, | |
stride=stride, | |
padding=padding) | |
c_in = reduce((lambda x, y: x * y), kernel_size) * channel | |
self.embedding = nn.Linear(c_in, hidden) | |
def forward(self, x, b, output_size): | |
f_h = int((output_size[0] + 2 * self.padding[0] - | |
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) | |
f_w = int((output_size[1] + 2 * self.padding[1] - | |
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) | |
feat = self.t2t(x) | |
feat = feat.permute(0, 2, 1) | |
# feat shape [b*t, num_vec, ks*ks*c] | |
feat = self.embedding(feat) | |
# feat shape after embedding [b, t*num_vec, hidden] | |
feat = feat.view(b, -1, f_h, f_w, feat.size(2)) | |
return feat | |
class SoftComp(nn.Module): | |
def __init__(self, channel, hidden, kernel_size, stride, padding): | |
super(SoftComp, self).__init__() | |
self.relu = nn.LeakyReLU(0.2, inplace=True) | |
c_out = reduce((lambda x, y: x * y), kernel_size) * channel | |
self.embedding = nn.Linear(hidden, c_out) | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.bias_conv = nn.Conv2d(channel, | |
channel, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x, t, output_size): | |
b_, _, _, _, c_ = x.shape | |
x = x.view(b_, -1, c_) | |
feat = self.embedding(x) | |
b, _, c = feat.size() | |
feat = feat.view(b * t, -1, c).permute(0, 2, 1) | |
feat = F.fold(feat, | |
output_size=output_size, | |
kernel_size=self.kernel_size, | |
stride=self.stride, | |
padding=self.padding) | |
feat = self.bias_conv(feat) | |
return feat | |
class FusionFeedForward(nn.Module): | |
def __init__(self, dim, hidden_dim=1960, t2t_params=None): | |
super(FusionFeedForward, self).__init__() | |
# We set hidden_dim as a default to 1960 | |
self.fc1 = nn.Sequential(nn.Linear(dim, hidden_dim)) | |
self.fc2 = nn.Sequential(nn.GELU(), nn.Linear(hidden_dim, dim)) | |
assert t2t_params is not None | |
self.t2t_params = t2t_params | |
self.kernel_shape = reduce((lambda x, y: x * y), t2t_params['kernel_size']) # 49 | |
def forward(self, x, output_size): | |
n_vecs = 1 | |
for i, d in enumerate(self.t2t_params['kernel_size']): | |
n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] - | |
(d - 1) - 1) / self.t2t_params['stride'][i] + 1) | |
x = self.fc1(x) | |
b, n, c = x.size() | |
normalizer = x.new_ones(b, n, self.kernel_shape).view(-1, n_vecs, self.kernel_shape).permute(0, 2, 1) | |
normalizer = F.fold(normalizer, | |
output_size=output_size, | |
kernel_size=self.t2t_params['kernel_size'], | |
padding=self.t2t_params['padding'], | |
stride=self.t2t_params['stride']) | |
x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1), | |
output_size=output_size, | |
kernel_size=self.t2t_params['kernel_size'], | |
padding=self.t2t_params['padding'], | |
stride=self.t2t_params['stride']) | |
x = F.unfold(x / normalizer, | |
kernel_size=self.t2t_params['kernel_size'], | |
padding=self.t2t_params['padding'], | |
stride=self.t2t_params['stride']).permute( | |
0, 2, 1).contiguous().view(b, n, c) | |
x = self.fc2(x) | |
return x | |
def window_partition(x, window_size, n_head): | |
""" | |
Args: | |
x: shape is (B, T, H, W, C) | |
window_size (tuple[int]): window size | |
Returns: | |
windows: (B, num_windows_h, num_windows_w, n_head, T, window_size, window_size, C//n_head) | |
""" | |
B, T, H, W, C = x.shape | |
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1], window_size[1], n_head, C//n_head) | |
windows = x.permute(0, 2, 4, 6, 1, 3, 5, 7).contiguous() | |
return windows | |
class SparseWindowAttention(nn.Module): | |
def __init__(self, dim, n_head, window_size, pool_size=(4,4), qkv_bias=True, attn_drop=0., proj_drop=0., | |
pooling_token=True): | |
super().__init__() | |
assert dim % n_head == 0 | |
# key, query, value projections for all heads | |
self.key = nn.Linear(dim, dim, qkv_bias) | |
self.query = nn.Linear(dim, dim, qkv_bias) | |
self.value = nn.Linear(dim, dim, qkv_bias) | |
# regularization | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj_drop = nn.Dropout(proj_drop) | |
# output projection | |
self.proj = nn.Linear(dim, dim) | |
self.n_head = n_head | |
self.window_size = window_size | |
self.pooling_token = pooling_token | |
if self.pooling_token: | |
ks, stride = pool_size, pool_size | |
self.pool_layer = nn.Conv2d(dim, dim, kernel_size=ks, stride=stride, padding=(0, 0), groups=dim) | |
self.pool_layer.weight.data.fill_(1. / (pool_size[0] * pool_size[1])) | |
self.pool_layer.bias.data.fill_(0) | |
# self.expand_size = tuple(i // 2 for i in window_size) | |
self.expand_size = tuple((i + 1) // 2 for i in window_size) | |
if any(i > 0 for i in self.expand_size): | |
# get mask for rolled k and rolled v | |
mask_tl = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_tl[:-self.expand_size[0], :-self.expand_size[1]] = 0 | |
mask_tr = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_tr[:-self.expand_size[0], self.expand_size[1]:] = 0 | |
mask_bl = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_bl[self.expand_size[0]:, :-self.expand_size[1]] = 0 | |
mask_br = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_br[self.expand_size[0]:, self.expand_size[1]:] = 0 | |
masrool_k = torch.stack((mask_tl, mask_tr, mask_bl, mask_br), 0).flatten(0) | |
self.register_buffer("valid_ind_rolled", masrool_k.nonzero(as_tuple=False).view(-1)) | |
self.max_pool = nn.MaxPool2d(window_size, window_size, (0, 0)) | |
def forward(self, x, mask=None, T_ind=None, attn_mask=None): | |
b, t, h, w, c = x.shape # 20 36 | |
w_h, w_w = self.window_size[0], self.window_size[1] | |
c_head = c // self.n_head | |
n_wh = math.ceil(h / self.window_size[0]) | |
n_ww = math.ceil(w / self.window_size[1]) | |
new_h = n_wh * self.window_size[0] # 20 | |
new_w = n_ww * self.window_size[1] # 36 | |
pad_r = new_w - w | |
pad_b = new_h - h | |
# reverse order | |
if pad_r > 0 or pad_b > 0: | |
x = F.pad(x,(0, 0, 0, pad_r, 0, pad_b, 0, 0), mode='constant', value=0) | |
mask = F.pad(mask,(0, 0, 0, pad_r, 0, pad_b, 0, 0), mode='constant', value=0) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
q = self.query(x) | |
k = self.key(x) | |
v = self.value(x) | |
win_q = window_partition(q.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head) | |
win_k = window_partition(k.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head) | |
win_v = window_partition(v.contiguous(), self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head) | |
# roll_k and roll_v | |
if any(i > 0 for i in self.expand_size): | |
(k_tl, v_tl) = map(lambda a: torch.roll(a, shifts=(-self.expand_size[0], -self.expand_size[1]), dims=(2, 3)), (k, v)) | |
(k_tr, v_tr) = map(lambda a: torch.roll(a, shifts=(-self.expand_size[0], self.expand_size[1]), dims=(2, 3)), (k, v)) | |
(k_bl, v_bl) = map(lambda a: torch.roll(a, shifts=(self.expand_size[0], -self.expand_size[1]), dims=(2, 3)), (k, v)) | |
(k_br, v_br) = map(lambda a: torch.roll(a, shifts=(self.expand_size[0], self.expand_size[1]), dims=(2, 3)), (k, v)) | |
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map( | |
lambda a: window_partition(a, self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head), | |
(k_tl, k_tr, k_bl, k_br)) | |
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map( | |
lambda a: window_partition(a, self.window_size, self.n_head).view(b, n_wh*n_ww, self.n_head, t, w_h*w_w, c_head), | |
(v_tl, v_tr, v_bl, v_br)) | |
rool_k = torch.cat((k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows), 4).contiguous() | |
rool_v = torch.cat((v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows), 4).contiguous() # [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] | |
# mask out tokens in current window | |
rool_k = rool_k[:, :, :, :, self.valid_ind_rolled] | |
rool_v = rool_v[:, :, :, :, self.valid_ind_rolled] | |
roll_N = rool_k.shape[4] | |
rool_k = rool_k.view(b, n_wh*n_ww, self.n_head, t, roll_N, c // self.n_head) | |
rool_v = rool_v.view(b, n_wh*n_ww, self.n_head, t, roll_N, c // self.n_head) | |
win_k = torch.cat((win_k, rool_k), dim=4) | |
win_v = torch.cat((win_v, rool_v), dim=4) | |
else: | |
win_k = win_k | |
win_v = win_v | |
# pool_k and pool_v | |
if self.pooling_token: | |
pool_x = self.pool_layer(x.view(b*t, new_h, new_w, c).permute(0,3,1,2)) | |
_, _, p_h, p_w = pool_x.shape | |
pool_x = pool_x.permute(0,2,3,1).view(b, t, p_h, p_w, c) | |
# pool_k | |
pool_k = self.key(pool_x).unsqueeze(1).repeat(1, n_wh*n_ww, 1, 1, 1, 1) # [b, n_wh*n_ww, t, p_h, p_w, c] | |
pool_k = pool_k.view(b, n_wh*n_ww, t, p_h, p_w, self.n_head, c_head).permute(0,1,5,2,3,4,6) | |
pool_k = pool_k.contiguous().view(b, n_wh*n_ww, self.n_head, t, p_h*p_w, c_head) | |
win_k = torch.cat((win_k, pool_k), dim=4) | |
# pool_v | |
pool_v = self.value(pool_x).unsqueeze(1).repeat(1, n_wh*n_ww, 1, 1, 1, 1) # [b, n_wh*n_ww, t, p_h, p_w, c] | |
pool_v = pool_v.view(b, n_wh*n_ww, t, p_h, p_w, self.n_head, c_head).permute(0,1,5,2,3,4,6) | |
pool_v = pool_v.contiguous().view(b, n_wh*n_ww, self.n_head, t, p_h*p_w, c_head) | |
win_v = torch.cat((win_v, pool_v), dim=4) | |
# [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] | |
out = torch.zeros_like(win_q) | |
l_t = mask.size(1) | |
mask = self.max_pool(mask.view(b * l_t, new_h, new_w)) | |
mask = mask.view(b, l_t, n_wh*n_ww) | |
mask = torch.sum(mask, dim=1) # [b, n_wh*n_ww] | |
for i in range(win_q.shape[0]): | |
### For masked windows | |
mask_ind_i = mask[i].nonzero(as_tuple=False).view(-1) | |
# mask out quary in current window | |
# [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] | |
mask_n = len(mask_ind_i) | |
if mask_n > 0: | |
win_q_t = win_q[i, mask_ind_i].view(mask_n, self.n_head, t*w_h*w_w, c_head) | |
win_k_t = win_k[i, mask_ind_i] | |
win_v_t = win_v[i, mask_ind_i] | |
# mask out key and value | |
if T_ind is not None: | |
# key [n_wh*n_ww, n_head, t, w_h*w_w, c_head] | |
win_k_t = win_k_t[:, :, T_ind.view(-1)].view(mask_n, self.n_head, -1, c_head) | |
# value | |
win_v_t = win_v_t[:, :, T_ind.view(-1)].view(mask_n, self.n_head, -1, c_head) | |
else: | |
win_k_t = win_k_t.view(n_wh*n_ww, self.n_head, t*w_h*w_w, c_head) | |
win_v_t = win_v_t.view(n_wh*n_ww, self.n_head, t*w_h*w_w, c_head) | |
att_t = (win_q_t @ win_k_t.transpose(-2, -1)) * (1.0 / math.sqrt(win_q_t.size(-1))) | |
att_t = F.softmax(att_t, dim=-1) | |
att_t = self.attn_drop(att_t) | |
y_t = att_t @ win_v_t | |
out[i, mask_ind_i] = y_t.view(-1, self.n_head, t, w_h*w_w, c_head) | |
### For unmasked windows | |
unmask_ind_i = (mask[i] == 0).nonzero(as_tuple=False).view(-1) | |
# mask out quary in current window | |
# [b, n_wh*n_ww, n_head, t, w_h*w_w, c_head] | |
win_q_s = win_q[i, unmask_ind_i] | |
win_k_s = win_k[i, unmask_ind_i, :, :, :w_h*w_w] | |
win_v_s = win_v[i, unmask_ind_i, :, :, :w_h*w_w] | |
att_s = (win_q_s @ win_k_s.transpose(-2, -1)) * (1.0 / math.sqrt(win_q_s.size(-1))) | |
att_s = F.softmax(att_s, dim=-1) | |
att_s = self.attn_drop(att_s) | |
y_s = att_s @ win_v_s | |
out[i, unmask_ind_i] = y_s | |
# re-assemble all head outputs side by side | |
out = out.view(b, n_wh, n_ww, self.n_head, t, w_h, w_w, c_head) | |
out = out.permute(0, 4, 1, 5, 2, 6, 3, 7).contiguous().view(b, t, new_h, new_w, c) | |
if pad_r > 0 or pad_b > 0: | |
out = out[:, :, :h, :w, :] | |
# output projection | |
out = self.proj_drop(self.proj(out)) | |
return out | |
class TemporalSparseTransformer(nn.Module): | |
def __init__(self, dim, n_head, window_size, pool_size, | |
norm_layer=nn.LayerNorm, t2t_params=None): | |
super().__init__() | |
self.window_size = window_size | |
self.attention = SparseWindowAttention(dim, n_head, window_size, pool_size) | |
self.norm1 = norm_layer(dim) | |
self.norm2 = norm_layer(dim) | |
self.mlp = FusionFeedForward(dim, t2t_params=t2t_params) | |
def forward(self, x, fold_x_size, mask=None, T_ind=None): | |
""" | |
Args: | |
x: image tokens, shape [B T H W C] | |
fold_x_size: fold feature size, shape [60 108] | |
mask: mask tokens, shape [B T H W 1] | |
Returns: | |
out_tokens: shape [B T H W C] | |
""" | |
B, T, H, W, C = x.shape # 20 36 | |
shortcut = x | |
x = self.norm1(x) | |
att_x = self.attention(x, mask, T_ind) | |
# FFN | |
x = shortcut + att_x | |
y = self.norm2(x) | |
x = x + self.mlp(y.view(B, T * H * W, C), fold_x_size).view(B, T, H, W, C) | |
return x | |
class TemporalSparseTransformerBlock(nn.Module): | |
def __init__(self, dim, n_head, window_size, pool_size, depths, t2t_params=None): | |
super().__init__() | |
blocks = [] | |
for i in range(depths): | |
blocks.append( | |
TemporalSparseTransformer(dim, n_head, window_size, pool_size, t2t_params=t2t_params) | |
) | |
self.transformer = nn.Sequential(*blocks) | |
self.depths = depths | |
def forward(self, x, fold_x_size, l_mask=None, t_dilation=2): | |
""" | |
Args: | |
x: image tokens, shape [B T H W C] | |
fold_x_size: fold feature size, shape [60 108] | |
l_mask: local mask tokens, shape [B T H W 1] | |
Returns: | |
out_tokens: shape [B T H W C] | |
""" | |
assert self.depths % t_dilation == 0, 'wrong t_dilation input.' | |
T = x.size(1) | |
T_ind = [torch.arange(i, T, t_dilation) for i in range(t_dilation)] * (self.depths // t_dilation) | |
for i in range(0, self.depths): | |
x = self.transformer[i](x, fold_x_size, l_mask, T_ind[i]) | |
return x | |