Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import time | |
import numpy as np | |
from keras.callbacks import Callback | |
from scipy.io.wavfile import read, write | |
from keras.models import Model, Sequential | |
from keras.layers import Convolution1D, AtrousConvolution1D, Flatten, Dense, \ | |
Input, Lambda, merge, Activation | |
def wavenetBlock(n_atrous_filters, atrous_filter_size, atrous_rate): | |
def f(input_): | |
residual = input_ | |
tanh_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size, | |
atrous_rate=atrous_rate, | |
border_mode='same', | |
activation='tanh')(input_) | |
sigmoid_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size, | |
atrous_rate=atrous_rate, | |
border_mode='same', | |
activation='sigmoid')(input_) | |
merged = merge([tanh_out, sigmoid_out], mode='mul') | |
skip_out = Convolution1D(1, 1, activation='relu', border_mode='same')(merged) | |
out = merge([skip_out, residual], mode='sum') | |
return out, skip_out | |
return f | |
def get_basic_generative_model(input_size): | |
input_ = Input(shape=(input_size, 1)) | |
A, B = wavenetBlock(64, 2, 2)(input_) | |
skip_connections = [B] | |
for i in range(20): | |
A, B = wavenetBlock(64, 2, 2**((i+2)%9))(A) | |
skip_connections.append(B) | |
net = merge(skip_connections, mode='sum') | |
net = Activation('relu')(net) | |
net = Convolution1D(1, 1, activation='relu')(net) | |
net = Convolution1D(1, 1)(net) | |
net = Flatten()(net) | |
net = Dense(256, activation='softmax')(net) | |
model = Model(input=input_, output=net) | |
model.compile(loss='categorical_crossentropy', optimizer='sgd', | |
metrics=['accuracy']) | |
model.summary() | |
return model | |
def get_audio(filename): | |
sr, audio = read(filename) | |
audio = audio.astype(float) | |
audio = audio - audio.min() | |
audio = audio / (audio.max() - audio.min()) | |
audio = (audio - 0.5) * 2 | |
return sr, audio | |
def frame_generator(sr, audio, frame_size, frame_shift, minibatch_size=20): | |
audio_len = len(audio) | |
X = [] | |
y = [] | |
while 1: | |
for i in range(0, audio_len - frame_size - 1, frame_shift): | |
frame = audio[i:i+frame_size] | |
if len(frame) < frame_size: | |
break | |
if i + frame_size >= audio_len: | |
break | |
temp = audio[i + frame_size] | |
target_val = int((np.sign(temp) * (np.log(1 + 256*abs(temp)) / ( | |
np.log(1+256))) + 1)/2.0 * 255) | |
X.append(frame.reshape(frame_size, 1)) | |
y.append((np.eye(256)[target_val])) | |
if len(X) == minibatch_size: | |
yield np.array(X), np.array(y) | |
X = [] | |
y = [] | |
def get_audio_from_model(model, sr, duration, seed_audio): | |
print('Generating audio...') | |
new_audio = np.zeros((sr * duration)) | |
curr_sample_idx = 0 | |
while curr_sample_idx < new_audio.shape[0]: | |
distribution = np.array(model.predict(seed_audio.reshape(1, | |
frame_size, 1) | |
), dtype=float).reshape(256) | |
distribution /= distribution.sum().astype(float) | |
predicted_val = np.random.choice(range(256), p=distribution) | |
ampl_val_8 = ((((predicted_val) / 255.0) - 0.5) * 2.0) | |
ampl_val_16 = (np.sign(ampl_val_8) * (1/256.0) * ((1 + 256.0)**abs( | |
ampl_val_8) - 1)) * 2**15 | |
new_audio[curr_sample_idx] = ampl_val_16 | |
seed_audio[-1] = ampl_val_16 | |
seed_audio[:-1] = seed_audio[1:] | |
pc_str = str(round(100*curr_sample_idx/float(new_audio.shape[0]), 2)) | |
sys.stdout.write('Percent complete: ' + pc_str + '\r') | |
sys.stdout.flush() | |
curr_sample_idx += 1 | |
print 'Audio generated.' | |
return new_audio.astype(np.int16) | |
class SaveAudioCallback(Callback): | |
def __init__(self, ckpt_freq, sr, seed_audio): | |
super(SaveAudioCallback, self).__init__() | |
self.ckpt_freq = ckpt_freq | |
self.sr = sr | |
self.seed_audio = seed_audio | |
def on_epoch_end(self, epoch, logs={}): | |
if (epoch+1)%self.ckpt_freq==0: | |
ts = str(int(time.time())) | |
filepath = os.path.join('output/', 'ckpt_'+ts+'.wav') | |
audio = get_audio_from_model(self.model, self.sr, 0.5, self.seed_audio) | |
write(filepath, self.sr, audio) | |
if __name__ == '__main__': | |
n_epochs = 2000 | |
frame_size = 2048 | |
frame_shift = 128 | |
sr_training, training_audio = get_audio('train.wav') | |
# training_audio = training_audio[:sr_training*1200] | |
sr_valid, valid_audio = get_audio('validate.wav') | |
# valid_audio = valid_audio[:sr_valid*60] | |
assert sr_training == sr_valid, "Training, validation samplerate mismatch" | |
n_training_examples = int((len(training_audio)-frame_size-1) / float( | |
frame_shift)) | |
n_validation_examples = int((len(valid_audio)-frame_size-1) / float( | |
frame_shift)) | |
model = get_basic_generative_model(frame_size) | |
print 'Total training examples:', n_training_examples | |
print 'Total validation examples:', n_validation_examples | |
audio_context = valid_audio[:frame_size] | |
save_audio_clbk = SaveAudioCallback(100, sr_training, audio_context) | |
validation_data_gen = frame_generator(sr_valid, valid_audio, frame_size, frame_shift) | |
training_data_gen = frame_generator(sr_training, training_audio, frame_size, frame_shift) | |
model.fit_generator(training_data_gen, samples_per_epoch=3000, nb_epoch=n_epochs, validation_data=validation_data_gen,nb_val_samples=500, verbose=1, callbacks=[save_audio_clbk]) | |
print('Saving model...') | |
str_timestamp = str(int(time.time())) | |
model.save('models/model_'+str_timestamp+'_'+str(n_epochs)+'.h5') | |
print('Generating audio...') | |
new_audio = get_audio_from_model(model, sr_training, 2, audio_context) | |
outfilepath = 'output/generated_'+str_timestamp+'.wav' | |
print 'Writing generated audio to:', outfilepath | |
write(outfilepath, sr_training, new_audio) | |
print '\nDone!' |