scorpion237 commited on
Commit
b6bdba6
1 Parent(s): fc8ccc7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -202,11 +202,10 @@ def main():
202
  "random_forest.csv",
203
  "text/csv",
204
  key='download_csv')
205
-
206
- st.text("Model report : \n " + classification_report(y, pred))
207
 
208
  # Accuracy score
209
  if data_encoded.shape[1] == 15:
 
210
  rf_score = accuracy_score(pred,y)
211
  st.write(":green[score d'exactitude]")
212
  st.write(f"{round(rf_score*100,2)}% d'exactitude")
@@ -231,9 +230,10 @@ def main():
231
  "discriminant.csv",
232
  "text/csv",
233
  key='download_csv')
234
- st.text("Model report : \n " + classification_report(y, pred))
235
 
236
  if data_encoded.shape[1] == 15:
 
237
  # Accuracy score
238
  lda_score = accuracy_score(pred,y)
239
  st.subheader(":green[score d'exactitude]")
@@ -269,8 +269,9 @@ def main():
269
  "xgboost.csv",
270
  "text/csv",
271
  key='download_csv')
272
- st.text("Model report : \n " + classification_report(y, pred))
273
  if data_encoded.shape[1] == 15:
 
274
  # Accuracy score
275
  xg_score = accuracy_score(pred,y)
276
  st.subheader(":green[score d'exactitude]")
@@ -296,8 +297,9 @@ def main():
296
  "neural_network.csv",
297
  "text/csv",
298
  key='download_csv')
299
- st.text("Model report : \n " + classification_report(y, pred))
300
  if data_encoded.shape[1] == 15:
 
301
  # Accuracy score
302
  ann_score = accuracy_score(pred,y)
303
  st.subheader(":green[score d'exactitude]")
 
202
  "random_forest.csv",
203
  "text/csv",
204
  key='download_csv')
 
 
205
 
206
  # Accuracy score
207
  if data_encoded.shape[1] == 15:
208
+ st.text("Model report : \n " + classification_report(y, pred))
209
  rf_score = accuracy_score(pred,y)
210
  st.write(":green[score d'exactitude]")
211
  st.write(f"{round(rf_score*100,2)}% d'exactitude")
 
230
  "discriminant.csv",
231
  "text/csv",
232
  key='download_csv')
233
+ #st.text("Model report : \n " + classification_report(y, pred))
234
 
235
  if data_encoded.shape[1] == 15:
236
+ st.text("Model report : \n " + classification_report(y, pred))
237
  # Accuracy score
238
  lda_score = accuracy_score(pred,y)
239
  st.subheader(":green[score d'exactitude]")
 
269
  "xgboost.csv",
270
  "text/csv",
271
  key='download_csv')
272
+ #st.text("Model report : \n " + classification_report(y, pred))
273
  if data_encoded.shape[1] == 15:
274
+ st.text("Model report : \n " + classification_report(y, pred))
275
  # Accuracy score
276
  xg_score = accuracy_score(pred,y)
277
  st.subheader(":green[score d'exactitude]")
 
297
  "neural_network.csv",
298
  "text/csv",
299
  key='download_csv')
300
+ #st.text("Model report : \n " + classification_report(y, pred))
301
  if data_encoded.shape[1] == 15:
302
+ st.text("Model report : \n " + classification_report(y, pred))
303
  # Accuracy score
304
  ann_score = accuracy_score(pred,y)
305
  st.subheader(":green[score d'exactitude]")