Spaces:
Sleeping
Sleeping
scorpion237
commited on
Commit
•
b6bdba6
1
Parent(s):
fc8ccc7
Update app.py
Browse files
app.py
CHANGED
@@ -202,11 +202,10 @@ def main():
|
|
202 |
"random_forest.csv",
|
203 |
"text/csv",
|
204 |
key='download_csv')
|
205 |
-
|
206 |
-
st.text("Model report : \n " + classification_report(y, pred))
|
207 |
|
208 |
# Accuracy score
|
209 |
if data_encoded.shape[1] == 15:
|
|
|
210 |
rf_score = accuracy_score(pred,y)
|
211 |
st.write(":green[score d'exactitude]")
|
212 |
st.write(f"{round(rf_score*100,2)}% d'exactitude")
|
@@ -231,9 +230,10 @@ def main():
|
|
231 |
"discriminant.csv",
|
232 |
"text/csv",
|
233 |
key='download_csv')
|
234 |
-
st.text("Model report : \n " + classification_report(y, pred))
|
235 |
|
236 |
if data_encoded.shape[1] == 15:
|
|
|
237 |
# Accuracy score
|
238 |
lda_score = accuracy_score(pred,y)
|
239 |
st.subheader(":green[score d'exactitude]")
|
@@ -269,8 +269,9 @@ def main():
|
|
269 |
"xgboost.csv",
|
270 |
"text/csv",
|
271 |
key='download_csv')
|
272 |
-
st.text("Model report : \n " + classification_report(y, pred))
|
273 |
if data_encoded.shape[1] == 15:
|
|
|
274 |
# Accuracy score
|
275 |
xg_score = accuracy_score(pred,y)
|
276 |
st.subheader(":green[score d'exactitude]")
|
@@ -296,8 +297,9 @@ def main():
|
|
296 |
"neural_network.csv",
|
297 |
"text/csv",
|
298 |
key='download_csv')
|
299 |
-
st.text("Model report : \n " + classification_report(y, pred))
|
300 |
if data_encoded.shape[1] == 15:
|
|
|
301 |
# Accuracy score
|
302 |
ann_score = accuracy_score(pred,y)
|
303 |
st.subheader(":green[score d'exactitude]")
|
|
|
202 |
"random_forest.csv",
|
203 |
"text/csv",
|
204 |
key='download_csv')
|
|
|
|
|
205 |
|
206 |
# Accuracy score
|
207 |
if data_encoded.shape[1] == 15:
|
208 |
+
st.text("Model report : \n " + classification_report(y, pred))
|
209 |
rf_score = accuracy_score(pred,y)
|
210 |
st.write(":green[score d'exactitude]")
|
211 |
st.write(f"{round(rf_score*100,2)}% d'exactitude")
|
|
|
230 |
"discriminant.csv",
|
231 |
"text/csv",
|
232 |
key='download_csv')
|
233 |
+
#st.text("Model report : \n " + classification_report(y, pred))
|
234 |
|
235 |
if data_encoded.shape[1] == 15:
|
236 |
+
st.text("Model report : \n " + classification_report(y, pred))
|
237 |
# Accuracy score
|
238 |
lda_score = accuracy_score(pred,y)
|
239 |
st.subheader(":green[score d'exactitude]")
|
|
|
269 |
"xgboost.csv",
|
270 |
"text/csv",
|
271 |
key='download_csv')
|
272 |
+
#st.text("Model report : \n " + classification_report(y, pred))
|
273 |
if data_encoded.shape[1] == 15:
|
274 |
+
st.text("Model report : \n " + classification_report(y, pred))
|
275 |
# Accuracy score
|
276 |
xg_score = accuracy_score(pred,y)
|
277 |
st.subheader(":green[score d'exactitude]")
|
|
|
297 |
"neural_network.csv",
|
298 |
"text/csv",
|
299 |
key='download_csv')
|
300 |
+
#st.text("Model report : \n " + classification_report(y, pred))
|
301 |
if data_encoded.shape[1] == 15:
|
302 |
+
st.text("Model report : \n " + classification_report(y, pred))
|
303 |
# Accuracy score
|
304 |
ann_score = accuracy_score(pred,y)
|
305 |
st.subheader(":green[score d'exactitude]")
|