Gemma-sciling's picture
Upload 49 files
edad70f
raw
history blame
1.27 kB
import torch
def decode_infer(output, stride):
# logging.info(torch.tensor(output.shape[0]))
# logging.info(output.shape)
# # bz is batch-size
# bz = tuple(torch.tensor(output.shape[0]))
# gridsize = tuple(torch.tensor(output.shape[-1]))
# logging.info(gridsize)
sh = torch.tensor(output.shape)
bz = sh[0]
gridsize = sh[-1]
output = output.permute(0, 2, 3, 1)
output = output.view(bz, gridsize, gridsize, self.gt_per_grid, 5+self.numclass)
x1y1, x2y2, conf, prob = torch.split(
output, [2, 2, 1, self.numclass], dim=4)
shiftx = torch.arange(0, gridsize, dtype=torch.float32)
shifty = torch.arange(0, gridsize, dtype=torch.float32)
shifty, shiftx = torch.meshgrid([shiftx, shifty])
shiftx = shiftx.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
shifty = shifty.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
xy_grid = torch.stack([shiftx, shifty], dim=4).cuda()
x1y1 = (xy_grid+0.5-torch.exp(x1y1))*stride
x2y2 = (xy_grid+0.5+torch.exp(x2y2))*stride
xyxy = torch.cat((x1y1, x2y2), dim=4)
conf = torch.sigmoid(conf)
prob = torch.sigmoid(prob)
output = torch.cat((xyxy, conf, prob), 4)
output = output.view(bz, -1, 5+self.numclass)
return output