Spaces:
Running
Running
import sklearn | |
import gradio as gr | |
import joblib | |
import pandas as pd | |
pipe = joblib.load("./model.pkl") | |
title = "Supersoaker Defective Product Prediction" | |
description = "This model predicts Supersoaker production line failures. Drag and drop any slice from dataset or edit values as you wish in below dataframe component." | |
with open("./config.json") as f: | |
config_dict = eval(f.read()) | |
headers = config_dict["sklearn"]["columns"] | |
example_dict = config_dict["sklearn"]["example_input"] | |
df = pd.DataFrame.from_dict(example_dict,orient='index').transpose() | |
inputs = [gr.Dataframe(headers = [item for item in example_dict], row_count = (2, "dynamic"), col_count=(24,"dynamic"), label="Input Data", interactive=1)] | |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Failures"])] | |
def infer(inputs): | |
data = pd.DataFrame(inputs, columns=[item for item in example_dict]) | |
predictions = pipe.predict(inputs) | |
return pd.DataFrame(predictions, columns=["results"]) | |
gr.Interface(infer, inputs = inputs, outputs = outputs, title = title, | |
description = description, examples=df.tail(3), cache_examples=False).launch(debug=True) | |