|
import gradio as gr |
|
|
|
import os, sys |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, pipeline |
|
from transformers import LlamaTokenizer |
|
import torch |
|
import spaces |
|
import psutil |
|
|
|
|
|
REPO_NAME = 'schuler/experimental-JP47D20' |
|
|
|
|
|
|
|
@spaces.GPU() |
|
def load_model(repo_name): |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(repo_name, trust_remote_code=True) |
|
generator_conf = GenerationConfig.from_pretrained(repo_name) |
|
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="eager") |
|
|
|
return tokenizer, generator_conf, model |
|
|
|
|
|
|
|
|
|
tokenizer, generator_conf, model = load_model(REPO_NAME) |
|
global_error = '' |
|
try: |
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
except Exception as e: |
|
global_error = f"Failed to load model: {str(e)}" |
|
|
|
@spaces.GPU() |
|
def local_generate( |
|
prompt, |
|
generation_config, |
|
max_new_tokens, |
|
do_sample=True, |
|
top_p=0.25, |
|
repetition_penalty=1.2, |
|
temperature=1.0 |
|
): |
|
response_output = generator( |
|
prompt, |
|
generation_config=generation_config, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
temperature=temperature |
|
) |
|
generated_text = response_output[0]['generated_text'] |
|
|
|
result = generated_text[len(prompt):] |
|
return result |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
result = 'none' |
|
try: |
|
|
|
prompt = '' |
|
messages = [] |
|
if (len(system_message)>0): |
|
prompt = "<|assistant|>"+system_message+f"<|end|>\n" |
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
for hmessage in messages: |
|
role = "<|assistant|>" if hmessage['role'] == 'assistant' else "<|user|>" |
|
prompt += f"{role}{hmessage['content']}<|end|>" |
|
prompt += f"<|assistant|>" |
|
|
|
tokens_cnt = 0 |
|
tokens_inc = 64 |
|
last_token_len = 1 |
|
full_result = '' |
|
while ( (tokens_cnt < max_tokens) and (last_token_len > 0) ): |
|
|
|
result = local_generate( |
|
prompt, |
|
generation_config=generator_conf, |
|
max_new_tokens=tokens_inc, |
|
do_sample=True, |
|
top_p=top_p, |
|
repetition_penalty=1.2, |
|
temperature=temperature |
|
) |
|
full_result = full_result + result |
|
prompt = prompt + result |
|
tokens_cnt = tokens_cnt + tokens_inc |
|
last_token_len = len(result) |
|
yield full_result |
|
|
|
except Exception as error: |
|
exc_type, exc_obj, exc_tb = sys.exc_info() |
|
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] |
|
result = str(error) +':'+ exc_type +':'+ fname +':'+ exc_tb.tb_lineno |
|
yield result |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
total_params = sum(p.numel() for p in model.parameters()) |
|
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
embed_params = sum(p.numel() for p in model.model.embed_tokens.parameters())*2 |
|
non_embed_params = (trainable_params - embed_params) / 1e6 |
|
cpu_usage = psutil.cpu_percent(interval=1) |
|
status_text = \ |
|
f"This chat uses the {REPO_NAME} model with {model.get_memory_footprint() / 1e6:.2f} MB memory footprint. " + \ |
|
f"Current CPU usage is {cpu_usage:.2f}% . '" + \ |
|
f"Total number of non embedding trainable parameters: {non_embed_params:.2f} million. " + \ |
|
f"You may ask questions such as 'What is biology?' or 'What is the human body?'" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="" + global_error, label="System message"), |
|
gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.25, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
description=status_text |
|
) |
|
""" |
|
with gr.Blocks() as demo: |
|
# Display the status text at the top |
|
gr.Markdown(status_text) |
|
# Create the ChatInterface |
|
chat = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="" + global_error, label="System message"), |
|
gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.25, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
""" |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|