schuler's picture
Update app.py
cbe42e9 verified
import gradio as gr
import os, sys
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, pipeline
from transformers import LlamaTokenizer
import torch
import spaces
import psutil
# Define the model repository
REPO_NAME = 'schuler/experimental-JP47D20'
# REPO_NAME = 'schuler/experimental-JP47D21-KPhi-3-micro-4k-instruct'
# How to cache?
@spaces.GPU()
def load_model(repo_name):
# tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
tokenizer = LlamaTokenizer.from_pretrained(repo_name, trust_remote_code=True)
generator_conf = GenerationConfig.from_pretrained(repo_name)
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="eager")
# model.to('cuda')
return tokenizer, generator_conf, model
# tokenizer, generator_conf, model, generator = False, False, False, False
# with gr.Blocks() as main_block:
tokenizer, generator_conf, model = load_model(REPO_NAME)
global_error = ''
try:
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except Exception as e:
global_error = f"Failed to load model: {str(e)}"
@spaces.GPU()
def local_generate(
prompt,
generation_config,
max_new_tokens,
do_sample=True,
top_p=0.25,
repetition_penalty=1.2,
temperature=1.0
):
response_output = generator(
prompt,
generation_config=generation_config,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
repetition_penalty=repetition_penalty,
temperature=temperature
)
generated_text = response_output[0]['generated_text']
# Extract the assistant's response
result = generated_text[len(prompt):]
return result
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
result = 'none'
try:
# Build the conversation prompt
prompt = ''
messages = []
if (len(system_message)>0):
prompt = "<|assistant|>"+system_message+f"<|end|>\n"
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
for hmessage in messages:
role = "<|assistant|>" if hmessage['role'] == 'assistant' else "<|user|>"
prompt += f"{role}{hmessage['content']}<|end|>"
prompt += f"<|assistant|>"
tokens_cnt = 0
tokens_inc = 64
last_token_len = 1
full_result = ''
while ( (tokens_cnt < max_tokens) and (last_token_len > 0) ):
# Generate the response
result = local_generate(
prompt,
generation_config=generator_conf,
max_new_tokens=tokens_inc,
do_sample=True,
top_p=top_p,
repetition_penalty=1.2,
temperature=temperature
)
full_result = full_result + result
prompt = prompt + result
tokens_cnt = tokens_cnt + tokens_inc
last_token_len = len(result)
yield full_result
except Exception as error:
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
result = str(error) +':'+ exc_type +':'+ fname +':'+ exc_tb.tb_lineno
yield result
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
embed_params = sum(p.numel() for p in model.model.embed_tokens.parameters())*2
non_embed_params = (trainable_params - embed_params) / 1e6
cpu_usage = psutil.cpu_percent(interval=1)
status_text = \
f"This chat uses the {REPO_NAME} model with {model.get_memory_footprint() / 1e6:.2f} MB memory footprint. " + \
f"Current CPU usage is {cpu_usage:.2f}% . '" + \
f"Total number of non embedding trainable parameters: {non_embed_params:.2f} million. " + \
f"You may ask questions such as 'What is biology?' or 'What is the human body?'"
# """
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="" + global_error, label="System message"),
gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.25,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
description=status_text
)
"""
with gr.Blocks() as demo:
# Display the status text at the top
gr.Markdown(status_text)
# Create the ChatInterface
chat = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="" + global_error, label="System message"),
gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.25,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
"""
if __name__ == "__main__":
demo.launch()