import gradio as gr | |
from transformers import pipeline | |
# Load a GPT-Neo model fine-tuned for code generation | |
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') | |
def generate_code(prompt): | |
# Generate code from the model | |
responses = generator(prompt, max_length=50, num_return_sequences=1, temperature=0.5) | |
return responses[0]['generated_text'] | |
# Create a Gradio Interface | |
iface = gr.Interface( | |
fn=generate_code, | |
inputs=[gr.inputs.Textbox(lines=10, label="Type your code description here")], | |
outputs=[gr.outputs.Textbox(label="Generated Code")], | |
examples=[["Create a Python function to add two numbers"]], | |
) | |
# Run the interface | |
if __name__ == "__main__": | |
iface.launch() | |
#import gradio as gr | |
#from transformers import pipeline | |
# Load a small GPT model fine-tuned for Python code generation | |
#generator = pipeline('text-generation', model='microsoft/CodeGPT-small-py') | |
#def generate_code(prompt): | |
# # Generate code from the model | |
# responses = generator(prompt, max_length=150, num_return_sequences=1, temperature=0.5) | |
# return responses[0]['generated_text'] | |
# Create a Gradio Interface | |
#iface = gr.Interface( | |
# fn=generate_code, | |
# inputs=[gr.inputs.Textbox(lines=10, label="Type your code description here")], | |
# outputs=[gr.outputs.Textbox(label="Generated Code")], | |
# examples=[["Define a Python function to calculate factorial."]], | |
#) | |
# Run the interface | |
#if __name__ == "__main__": | |
# iface.launch() | |