Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
from ormbg import ORMBG | |
from PIL import Image | |
model_path = "ormbg.pth" | |
# Load the model globally but don't send to device yet | |
net = ORMBG() | |
net.load_state_dict(torch.load(model_path, map_location="cpu")) | |
net.eval() | |
def resize_image(image): | |
image = image.convert("RGB") | |
model_input_size = (1024, 1024) | |
image = image.resize(model_input_size, Image.BILINEAR) | |
return image | |
def inference(image): | |
# Check for CUDA and set the device inside inference | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
net.to(device) | |
# Prepare input | |
orig_image = Image.fromarray(image) | |
w, h = orig_image.size | |
image = resize_image(orig_image) | |
im_np = np.array(image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = torch.unsqueeze(im_tensor, 0) | |
im_tensor = torch.divide(im_tensor, 255.0) | |
if torch.cuda.is_available(): | |
im_tensor = im_tensor.to(device) | |
# Inference | |
result = net(im_tensor) | |
# Post process | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
# Image to PIL | |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
pil_im = Image.fromarray(np.squeeze(im_array)) | |
# Paste the mask on the original image | |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) | |
new_im.paste(orig_image, mask=pil_im) | |
return new_im | |
# Gradio interface setup | |
title = "Open Remove Background Model (ormbg)" | |
description = r""" | |
This model is a <strong>fully open-source background remover</strong> optimized for images with humans. | |
It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS). | |
The model was trained with the synthetic [Human Segmentation Dataset](https://huggingface.co/datasets/schirrmacher/humans). | |
This is the first iteration of the model, so there will be improvements! | |
If you identify cases where the model fails, <a href='https://huggingface.co/schirrmacher/ormbg/discussions' target='_blank'>upload your examples</a>! | |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials | |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds | |
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements | |
""" | |
examples = ["./example1.png", "./example2.png", "./example3.png"] | |
demo = gr.Interface( | |
fn=inference, | |
inputs="image", | |
outputs="image", | |
examples=examples, | |
title=title, | |
description=description | |
) | |
if __name__ == "__main__": | |
demo.launch(share=False) | |