|
|
|
import copy |
|
import warnings |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig |
|
from .single_stage import SingleStageDetector |
|
|
|
|
|
@MODELS.register_module() |
|
class RPN(SingleStageDetector): |
|
"""Implementation of Region Proposal Network. |
|
|
|
Args: |
|
backbone (:obj:`ConfigDict` or dict): The backbone config. |
|
neck (:obj:`ConfigDict` or dict): The neck config. |
|
bbox_head (:obj:`ConfigDict` or dict): The bbox head config. |
|
train_cfg (:obj:`ConfigDict` or dict, optional): The training config. |
|
test_cfg (:obj:`ConfigDict` or dict, optional): The testing config. |
|
data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of |
|
:class:`DetDataPreprocessor` to process the input data. |
|
Defaults to None. |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or |
|
list[dict], optional): Initialization config dict. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
backbone: ConfigType, |
|
neck: ConfigType, |
|
rpn_head: ConfigType, |
|
train_cfg: ConfigType, |
|
test_cfg: ConfigType, |
|
data_preprocessor: OptConfigType = None, |
|
init_cfg: OptMultiConfig = None, |
|
**kwargs) -> None: |
|
super(SingleStageDetector, self).__init__( |
|
data_preprocessor=data_preprocessor, init_cfg=init_cfg) |
|
self.backbone = MODELS.build(backbone) |
|
self.neck = MODELS.build(neck) if neck is not None else None |
|
rpn_train_cfg = train_cfg['rpn'] if train_cfg is not None else None |
|
rpn_head_num_classes = rpn_head.get('num_classes', 1) |
|
if rpn_head_num_classes != 1: |
|
warnings.warn('The `num_classes` should be 1 in RPN, but get ' |
|
f'{rpn_head_num_classes}, please set ' |
|
'rpn_head.num_classes = 1 in your config file.') |
|
rpn_head.update(num_classes=1) |
|
rpn_head.update(train_cfg=rpn_train_cfg) |
|
rpn_head.update(test_cfg=test_cfg['rpn']) |
|
self.bbox_head = MODELS.build(rpn_head) |
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
|
|
def loss(self, batch_inputs: Tensor, |
|
batch_data_samples: SampleList) -> dict: |
|
"""Calculate losses from a batch of inputs and data samples. |
|
|
|
Args: |
|
batch_inputs (Tensor): Input images of shape (N, C, H, W). |
|
These should usually be mean centered and std scaled. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
x = self.extract_feat(batch_inputs) |
|
|
|
|
|
rpn_data_samples = copy.deepcopy(batch_data_samples) |
|
for data_sample in rpn_data_samples: |
|
data_sample.gt_instances.labels = \ |
|
torch.zeros_like(data_sample.gt_instances.labels) |
|
|
|
losses = self.bbox_head.loss(x, rpn_data_samples) |
|
return losses |
|
|