|
|
|
from typing import Dict, List, Tuple |
|
|
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig |
|
from .single_stage import SingleStageDetector |
|
|
|
|
|
@MODELS.register_module() |
|
class MaskFormer(SingleStageDetector): |
|
r"""Implementation of `Per-Pixel Classification is |
|
NOT All You Need for Semantic Segmentation |
|
<https://arxiv.org/pdf/2107.06278>`_.""" |
|
|
|
def __init__(self, |
|
backbone: ConfigType, |
|
neck: OptConfigType = None, |
|
panoptic_head: OptConfigType = None, |
|
panoptic_fusion_head: OptConfigType = None, |
|
train_cfg: OptConfigType = None, |
|
test_cfg: OptConfigType = None, |
|
data_preprocessor: OptConfigType = None, |
|
init_cfg: OptMultiConfig = None): |
|
super(SingleStageDetector, self).__init__( |
|
data_preprocessor=data_preprocessor, init_cfg=init_cfg) |
|
self.backbone = MODELS.build(backbone) |
|
if neck is not None: |
|
self.neck = MODELS.build(neck) |
|
|
|
panoptic_head_ = panoptic_head.deepcopy() |
|
panoptic_head_.update(train_cfg=train_cfg) |
|
panoptic_head_.update(test_cfg=test_cfg) |
|
self.panoptic_head = MODELS.build(panoptic_head_) |
|
|
|
panoptic_fusion_head_ = panoptic_fusion_head.deepcopy() |
|
panoptic_fusion_head_.update(test_cfg=test_cfg) |
|
self.panoptic_fusion_head = MODELS.build(panoptic_fusion_head_) |
|
|
|
self.num_things_classes = self.panoptic_head.num_things_classes |
|
self.num_stuff_classes = self.panoptic_head.num_stuff_classes |
|
self.num_classes = self.panoptic_head.num_classes |
|
|
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
|
|
def loss(self, batch_inputs: Tensor, |
|
batch_data_samples: SampleList) -> Dict[str, Tensor]: |
|
""" |
|
Args: |
|
batch_inputs (Tensor): Input images of shape (N, C, H, W). |
|
These should usually be mean centered and std scaled. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of loss components |
|
""" |
|
x = self.extract_feat(batch_inputs) |
|
losses = self.panoptic_head.loss(x, batch_data_samples) |
|
return losses |
|
|
|
def predict(self, |
|
batch_inputs: Tensor, |
|
batch_data_samples: SampleList, |
|
rescale: bool = True) -> SampleList: |
|
"""Predict results from a batch of inputs and data samples with post- |
|
processing. |
|
|
|
Args: |
|
batch_inputs (Tensor): Inputs with shape (N, C, H, W). |
|
batch_data_samples (List[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
rescale (bool): Whether to rescale the results. |
|
Defaults to True. |
|
|
|
Returns: |
|
list[:obj:`DetDataSample`]: Detection results of the |
|
input images. Each DetDataSample usually contain |
|
'pred_instances' and `pred_panoptic_seg`. And the |
|
``pred_instances`` usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- masks (Tensor): Has a shape (num_instances, H, W). |
|
|
|
And the ``pred_panoptic_seg`` contains the following key |
|
|
|
- sem_seg (Tensor): panoptic segmentation mask, has a |
|
shape (1, h, w). |
|
""" |
|
feats = self.extract_feat(batch_inputs) |
|
mask_cls_results, mask_pred_results = self.panoptic_head.predict( |
|
feats, batch_data_samples) |
|
results_list = self.panoptic_fusion_head.predict( |
|
mask_cls_results, |
|
mask_pred_results, |
|
batch_data_samples, |
|
rescale=rescale) |
|
results = self.add_pred_to_datasample(batch_data_samples, results_list) |
|
|
|
return results |
|
|
|
def add_pred_to_datasample(self, data_samples: SampleList, |
|
results_list: List[dict]) -> SampleList: |
|
"""Add predictions to `DetDataSample`. |
|
|
|
Args: |
|
data_samples (list[:obj:`DetDataSample`], optional): A batch of |
|
data samples that contain annotations and predictions. |
|
results_list (List[dict]): Instance segmentation, segmantic |
|
segmentation and panoptic segmentation results. |
|
|
|
Returns: |
|
list[:obj:`DetDataSample`]: Detection results of the |
|
input images. Each DetDataSample usually contain |
|
'pred_instances' and `pred_panoptic_seg`. And the |
|
``pred_instances`` usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- masks (Tensor): Has a shape (num_instances, H, W). |
|
|
|
And the ``pred_panoptic_seg`` contains the following key |
|
|
|
- sem_seg (Tensor): panoptic segmentation mask, has a |
|
shape (1, h, w). |
|
""" |
|
for data_sample, pred_results in zip(data_samples, results_list): |
|
if 'pan_results' in pred_results: |
|
data_sample.pred_panoptic_seg = pred_results['pan_results'] |
|
|
|
if 'ins_results' in pred_results: |
|
data_sample.pred_instances = pred_results['ins_results'] |
|
|
|
assert 'sem_results' not in pred_results, 'segmantic ' \ |
|
'segmentation results are not supported yet.' |
|
|
|
return data_samples |
|
|
|
def _forward(self, batch_inputs: Tensor, |
|
batch_data_samples: SampleList) -> Tuple[List[Tensor]]: |
|
"""Network forward process. Usually includes backbone, neck and head |
|
forward without any post-processing. |
|
|
|
Args: |
|
batch_inputs (Tensor): Inputs with shape (N, C, H, W). |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
tuple[List[Tensor]]: A tuple of features from ``panoptic_head`` |
|
forward. |
|
""" |
|
feats = self.extract_feat(batch_inputs) |
|
results = self.panoptic_head.forward(feats, batch_data_samples) |
|
return results |
|
|