|
|
|
import math |
|
from typing import Dict, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention |
|
from mmengine.model import xavier_init |
|
from torch import Tensor, nn |
|
from torch.nn.init import normal_ |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import OptSampleList |
|
from mmdet.utils import OptConfigType |
|
from ..layers import (DeformableDetrTransformerDecoder, |
|
DeformableDetrTransformerEncoder, SinePositionalEncoding) |
|
from .base_detr import DetectionTransformer |
|
|
|
|
|
@MODELS.register_module() |
|
class DeformableDETR(DetectionTransformer): |
|
r"""Implementation of `Deformable DETR: Deformable Transformers for |
|
End-to-End Object Detection <https://arxiv.org/abs/2010.04159>`_ |
|
|
|
Code is modified from the `official github repo |
|
<https://github.com/fundamentalvision/Deformable-DETR>`_. |
|
|
|
Args: |
|
decoder (:obj:`ConfigDict` or dict, optional): Config of the |
|
Transformer decoder. Defaults to None. |
|
bbox_head (:obj:`ConfigDict` or dict, optional): Config for the |
|
bounding box head module. Defaults to None. |
|
with_box_refine (bool, optional): Whether to refine the references |
|
in the decoder. Defaults to `False`. |
|
as_two_stage (bool, optional): Whether to generate the proposal |
|
from the outputs of encoder. Defaults to `False`. |
|
num_feature_levels (int, optional): Number of feature levels. |
|
Defaults to 4. |
|
""" |
|
|
|
def __init__(self, |
|
*args, |
|
decoder: OptConfigType = None, |
|
bbox_head: OptConfigType = None, |
|
with_box_refine: bool = False, |
|
as_two_stage: bool = False, |
|
num_feature_levels: int = 4, |
|
**kwargs) -> None: |
|
self.with_box_refine = with_box_refine |
|
self.as_two_stage = as_two_stage |
|
self.num_feature_levels = num_feature_levels |
|
|
|
if bbox_head is not None: |
|
assert 'share_pred_layer' not in bbox_head and \ |
|
'num_pred_layer' not in bbox_head and \ |
|
'as_two_stage' not in bbox_head, \ |
|
'The two keyword args `share_pred_layer`, `num_pred_layer`, ' \ |
|
'and `as_two_stage are set in `detector.__init__()`, users ' \ |
|
'should not set them in `bbox_head` config.' |
|
|
|
|
|
|
|
|
|
bbox_head['share_pred_layer'] = not with_box_refine |
|
bbox_head['num_pred_layer'] = (decoder['num_layers'] + 1) \ |
|
if self.as_two_stage else decoder['num_layers'] |
|
bbox_head['as_two_stage'] = as_two_stage |
|
|
|
super().__init__(*args, decoder=decoder, bbox_head=bbox_head, **kwargs) |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers except for backbone, neck and bbox_head.""" |
|
self.positional_encoding = SinePositionalEncoding( |
|
**self.positional_encoding) |
|
if self.encoder_layers_num>0: |
|
self.encoder = DeformableDetrTransformerEncoder(**self.encoder) |
|
self.decoder = DeformableDetrTransformerDecoder(**self.decoder) |
|
self.embed_dims = self.encoder.embed_dims |
|
if not self.as_two_stage: |
|
self.query_embedding = nn.Embedding(self.num_queries, |
|
self.embed_dims * 2) |
|
|
|
|
|
|
|
num_feats = self.positional_encoding.num_feats |
|
assert num_feats * 2 == self.embed_dims, \ |
|
'embed_dims should be exactly 2 times of num_feats. ' \ |
|
f'Found {self.embed_dims} and {num_feats}.' |
|
|
|
self.level_embed = nn.Parameter( |
|
torch.Tensor(self.num_feature_levels, self.embed_dims)) |
|
|
|
if self.as_two_stage: |
|
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims) |
|
self.memory_trans_norm = nn.LayerNorm(self.embed_dims) |
|
self.pos_trans_fc = nn.Linear(self.embed_dims * 2, |
|
self.embed_dims * 2) |
|
self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) |
|
else: |
|
self.reference_points_fc = nn.Linear(self.embed_dims, 2) |
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights for Transformer and other components.""" |
|
super().init_weights() |
|
if self.encoder_layers_num>0: |
|
for coder in self.encoder, self.decoder: |
|
for p in coder.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
else: |
|
for p in self.decoder.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
for m in self.modules(): |
|
if isinstance(m, MultiScaleDeformableAttention): |
|
m.init_weights() |
|
if self.as_two_stage: |
|
nn.init.xavier_uniform_(self.memory_trans_fc.weight) |
|
nn.init.xavier_uniform_(self.pos_trans_fc.weight) |
|
else: |
|
xavier_init( |
|
self.reference_points_fc, distribution='uniform', bias=0.) |
|
normal_(self.level_embed) |
|
|
|
def pre_transformer( |
|
self, |
|
mlvl_feats: Tuple[Tensor], |
|
batch_data_samples: OptSampleList = None) -> Tuple[Dict]: |
|
"""Process image features before feeding them to the transformer. |
|
|
|
The forward procedure of the transformer is defined as: |
|
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' |
|
More details can be found at `TransformerDetector.forward_transformer` |
|
in `mmdet/detector/base_detr.py`. |
|
|
|
Args: |
|
mlvl_feats (tuple[Tensor]): Multi-level features that may have |
|
different resolutions, output from neck. Each feature has |
|
shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'. |
|
batch_data_samples (list[:obj:`DetDataSample`], optional): The |
|
batch data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
Defaults to None. |
|
|
|
Returns: |
|
tuple[dict]: The first dict contains the inputs of encoder and the |
|
second dict contains the inputs of decoder. |
|
|
|
- encoder_inputs_dict (dict): The keyword args dictionary of |
|
`self.forward_encoder()`, which includes 'feat', 'feat_mask', |
|
and 'feat_pos'. |
|
- decoder_inputs_dict (dict): The keyword args dictionary of |
|
`self.forward_decoder()`, which includes 'memory_mask'. |
|
""" |
|
batch_size = mlvl_feats[0].size(0) |
|
|
|
|
|
assert batch_data_samples is not None |
|
batch_input_shape = batch_data_samples[0].batch_input_shape |
|
img_shape_list = [sample.img_shape for sample in batch_data_samples] |
|
input_img_h, input_img_w = batch_input_shape |
|
masks = mlvl_feats[0].new_ones((batch_size, input_img_h, input_img_w)) |
|
for img_id in range(batch_size): |
|
img_h, img_w = img_shape_list[img_id] |
|
masks[img_id, :img_h, :img_w] = 0 |
|
|
|
|
|
|
|
mlvl_masks = [] |
|
mlvl_pos_embeds = [] |
|
for feat in mlvl_feats: |
|
mlvl_masks.append( |
|
F.interpolate(masks[None], |
|
size=feat.shape[-2:]).to(torch.bool).squeeze(0)) |
|
mlvl_pos_embeds.append(self.positional_encoding(mlvl_masks[-1])) |
|
|
|
feat_flatten = [] |
|
lvl_pos_embed_flatten = [] |
|
mask_flatten = [] |
|
spatial_shapes = [] |
|
for lvl, (feat, mask, pos_embed) in enumerate( |
|
zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): |
|
batch_size, c, h, w = feat.shape |
|
|
|
feat = feat.view(batch_size, c, -1).permute(0, 2, 1) |
|
pos_embed = pos_embed.view(batch_size, c, -1).permute(0, 2, 1) |
|
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) |
|
|
|
mask = mask.flatten(1) |
|
spatial_shape = (h, w) |
|
|
|
feat_flatten.append(feat) |
|
lvl_pos_embed_flatten.append(lvl_pos_embed) |
|
mask_flatten.append(mask) |
|
spatial_shapes.append(spatial_shape) |
|
|
|
|
|
feat_flatten = torch.cat(feat_flatten, 1) |
|
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) |
|
|
|
mask_flatten = torch.cat(mask_flatten, 1) |
|
|
|
spatial_shapes = torch.as_tensor( |
|
spatial_shapes, |
|
dtype=torch.long, |
|
device=feat_flatten.device) |
|
level_start_index = torch.cat(( |
|
spatial_shapes.new_zeros((1, )), |
|
spatial_shapes.prod(1).cumsum(0)[:-1])) |
|
valid_ratios = torch.stack( |
|
[self.get_valid_ratio(m) for m in mlvl_masks], 1) |
|
|
|
encoder_inputs_dict = dict( |
|
feat=feat_flatten, |
|
feat_mask=mask_flatten, |
|
feat_pos=lvl_pos_embed_flatten, |
|
spatial_shapes=spatial_shapes, |
|
level_start_index=level_start_index, |
|
valid_ratios=valid_ratios) |
|
decoder_inputs_dict = dict( |
|
memory_mask=mask_flatten, |
|
spatial_shapes=spatial_shapes, |
|
level_start_index=level_start_index, |
|
valid_ratios=valid_ratios) |
|
return encoder_inputs_dict, decoder_inputs_dict |
|
|
|
def forward_encoder(self, feat: Tensor, feat_mask: Tensor, |
|
feat_pos: Tensor, spatial_shapes: Tensor, |
|
level_start_index: Tensor, |
|
valid_ratios: Tensor) -> Dict: |
|
"""Forward with Transformer encoder. |
|
|
|
The forward procedure of the transformer is defined as: |
|
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' |
|
More details can be found at `TransformerDetector.forward_transformer` |
|
in `mmdet/detector/base_detr.py`. |
|
|
|
Args: |
|
feat (Tensor): Sequential features, has shape (bs, num_feat_points, |
|
dim). |
|
feat_mask (Tensor): ByteTensor, the padding mask of the features, |
|
has shape (bs, num_feat_points). |
|
feat_pos (Tensor): The positional embeddings of the features, has |
|
shape (bs, num_feat_points, dim). |
|
spatial_shapes (Tensor): Spatial shapes of features in all levels, |
|
has shape (num_levels, 2), last dimension represents (h, w). |
|
level_start_index (Tensor): The start index of each level. |
|
A tensor has shape (num_levels, ) and can be represented |
|
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...]. |
|
valid_ratios (Tensor): The ratios of the valid width and the valid |
|
height relative to the width and the height of features in all |
|
levels, has shape (bs, num_levels, 2). |
|
|
|
Returns: |
|
dict: The dictionary of encoder outputs, which includes the |
|
`memory` of the encoder output. |
|
""" |
|
memory = self.encoder( |
|
query=feat, |
|
query_pos=feat_pos, |
|
key_padding_mask=feat_mask, |
|
spatial_shapes=spatial_shapes, |
|
level_start_index=level_start_index, |
|
valid_ratios=valid_ratios) |
|
encoder_outputs_dict = dict( |
|
memory=memory, |
|
memory_mask=feat_mask, |
|
spatial_shapes=spatial_shapes) |
|
return encoder_outputs_dict |
|
|
|
def pre_decoder(self, memory: Tensor, memory_mask: Tensor, |
|
spatial_shapes: Tensor) -> Tuple[Dict, Dict]: |
|
"""Prepare intermediate variables before entering Transformer decoder, |
|
such as `query`, `query_pos`, and `reference_points`. |
|
|
|
The forward procedure of the transformer is defined as: |
|
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' |
|
More details can be found at `TransformerDetector.forward_transformer` |
|
in `mmdet/detector/base_detr.py`. |
|
|
|
Args: |
|
memory (Tensor): The output embeddings of the Transformer encoder, |
|
has shape (bs, num_feat_points, dim). |
|
memory_mask (Tensor): ByteTensor, the padding mask of the memory, |
|
has shape (bs, num_feat_points). It will only be used when |
|
`as_two_stage` is `True`. |
|
spatial_shapes (Tensor): Spatial shapes of features in all levels, |
|
has shape (num_levels, 2), last dimension represents (h, w). |
|
It will only be used when `as_two_stage` is `True`. |
|
|
|
Returns: |
|
tuple[dict, dict]: The decoder_inputs_dict and head_inputs_dict. |
|
|
|
- decoder_inputs_dict (dict): The keyword dictionary args of |
|
`self.forward_decoder()`, which includes 'query', 'query_pos', |
|
'memory', and `reference_points`. The reference_points of |
|
decoder input here are 4D boxes when `as_two_stage` is `True`, |
|
otherwise 2D points, although it has `points` in its name. |
|
The reference_points in encoder is always 2D points. |
|
- head_inputs_dict (dict): The keyword dictionary args of the |
|
bbox_head functions, which includes `enc_outputs_class` and |
|
`enc_outputs_coord`. They are both `None` when 'as_two_stage' |
|
is `False`. The dict is empty when `self.training` is `False`. |
|
""" |
|
batch_size, _, c = memory.shape |
|
if self.as_two_stage: |
|
output_memory, output_proposals = \ |
|
self.gen_encoder_output_proposals( |
|
memory, memory_mask, spatial_shapes) |
|
enc_outputs_class = self.bbox_head.cls_branches[ |
|
self.decoder.num_layers]( |
|
output_memory) |
|
enc_outputs_coord_unact = self.bbox_head.reg_branches[ |
|
self.decoder.num_layers](output_memory) + output_proposals |
|
enc_outputs_coord = enc_outputs_coord_unact.sigmoid() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
topk_proposals = torch.topk( |
|
enc_outputs_class[..., 0], self.num_queries, dim=1)[1] |
|
topk_coords_unact = torch.gather( |
|
enc_outputs_coord_unact, 1, |
|
topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) |
|
topk_coords_unact = topk_coords_unact.detach() |
|
reference_points = topk_coords_unact.sigmoid() |
|
pos_trans_out = self.pos_trans_fc( |
|
self.get_proposal_pos_embed(topk_coords_unact)) |
|
pos_trans_out = self.pos_trans_norm(pos_trans_out) |
|
query_pos, query = torch.split(pos_trans_out, c, dim=2) |
|
else: |
|
enc_outputs_class, enc_outputs_coord = None, None |
|
query_embed = self.query_embedding.weight |
|
query_pos, query = torch.split(query_embed, c, dim=1) |
|
query_pos = query_pos.unsqueeze(0).expand(batch_size, -1, -1) |
|
query = query.unsqueeze(0).expand(batch_size, -1, -1) |
|
reference_points = self.reference_points_fc(query_pos).sigmoid() |
|
|
|
decoder_inputs_dict = dict( |
|
query=query, |
|
query_pos=query_pos, |
|
memory=memory, |
|
reference_points=reference_points) |
|
head_inputs_dict = dict( |
|
enc_outputs_class=enc_outputs_class, |
|
enc_outputs_coord=enc_outputs_coord) if self.training else dict() |
|
return decoder_inputs_dict, head_inputs_dict |
|
|
|
def forward_decoder(self, query: Tensor, query_pos: Tensor, memory: Tensor, |
|
memory_mask: Tensor, reference_points: Tensor, |
|
spatial_shapes: Tensor, level_start_index: Tensor, |
|
valid_ratios: Tensor) -> Dict: |
|
"""Forward with Transformer decoder. |
|
|
|
The forward procedure of the transformer is defined as: |
|
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder' |
|
More details can be found at `TransformerDetector.forward_transformer` |
|
in `mmdet/detector/base_detr.py`. |
|
|
|
Args: |
|
query (Tensor): The queries of decoder inputs, has shape |
|
(bs, num_queries, dim). |
|
query_pos (Tensor): The positional queries of decoder inputs, |
|
has shape (bs, num_queries, dim). |
|
memory (Tensor): The output embeddings of the Transformer encoder, |
|
has shape (bs, num_feat_points, dim). |
|
memory_mask (Tensor): ByteTensor, the padding mask of the memory, |
|
has shape (bs, num_feat_points). |
|
reference_points (Tensor): The initial reference, has shape |
|
(bs, num_queries, 4) with the last dimension arranged as |
|
(cx, cy, w, h) when `as_two_stage` is `True`, otherwise has |
|
shape (bs, num_queries, 2) with the last dimension arranged as |
|
(cx, cy). |
|
spatial_shapes (Tensor): Spatial shapes of features in all levels, |
|
has shape (num_levels, 2), last dimension represents (h, w). |
|
level_start_index (Tensor): The start index of each level. |
|
A tensor has shape (num_levels, ) and can be represented |
|
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...]. |
|
valid_ratios (Tensor): The ratios of the valid width and the valid |
|
height relative to the width and the height of features in all |
|
levels, has shape (bs, num_levels, 2). |
|
|
|
Returns: |
|
dict: The dictionary of decoder outputs, which includes the |
|
`hidden_states` of the decoder output and `references` including |
|
the initial and intermediate reference_points. |
|
""" |
|
inter_states, inter_references = self.decoder( |
|
query=query, |
|
value=memory, |
|
query_pos=query_pos, |
|
key_padding_mask=memory_mask, |
|
reference_points=reference_points, |
|
spatial_shapes=spatial_shapes, |
|
level_start_index=level_start_index, |
|
valid_ratios=valid_ratios, |
|
reg_branches=self.bbox_head.reg_branches |
|
if self.with_box_refine else None) |
|
references = [reference_points, *inter_references] |
|
decoder_outputs_dict = dict( |
|
hidden_states=inter_states, references=references) |
|
return decoder_outputs_dict |
|
|
|
@staticmethod |
|
def get_valid_ratio(mask: Tensor) -> Tensor: |
|
"""Get the valid radios of feature map in a level. |
|
|
|
.. code:: text |
|
|
|
|---> valid_W <---| |
|
---+-----------------+-----+--- |
|
A | | | A |
|
| | | | | |
|
| | | | | |
|
valid_H | | | | |
|
| | | | H |
|
| | | | | |
|
V | | | | |
|
---+-----------------+ | | |
|
| | V |
|
+-----------------------+--- |
|
|---------> W <---------| |
|
|
|
The valid_ratios are defined as: |
|
r_h = valid_H / H, r_w = valid_W / W |
|
They are the factors to re-normalize the relative coordinates of the |
|
image to the relative coordinates of the current level feature map. |
|
|
|
Args: |
|
mask (Tensor): Binary mask of a feature map, has shape (bs, H, W). |
|
|
|
Returns: |
|
Tensor: valid ratios [r_w, r_h] of a feature map, has shape (1, 2). |
|
""" |
|
_, H, W = mask.shape |
|
valid_H = torch.sum(~mask[:, :, 0], 1) |
|
valid_W = torch.sum(~mask[:, 0, :], 1) |
|
valid_ratio_h = valid_H.float() / H |
|
valid_ratio_w = valid_W.float() / W |
|
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) |
|
return valid_ratio |
|
|
|
def gen_encoder_output_proposals( |
|
self, memory: Tensor, memory_mask: Tensor, |
|
spatial_shapes: Tensor) -> Tuple[Tensor, Tensor]: |
|
"""Generate proposals from encoded memory. The function will only be |
|
used when `as_two_stage` is `True`. |
|
|
|
Args: |
|
memory (Tensor): The output embeddings of the Transformer encoder, |
|
has shape (bs, num_feat_points, dim). |
|
memory_mask (Tensor): ByteTensor, the padding mask of the memory, |
|
has shape (bs, num_feat_points). |
|
spatial_shapes (Tensor): Spatial shapes of features in all levels, |
|
has shape (num_levels, 2), last dimension represents (h, w). |
|
|
|
Returns: |
|
tuple: A tuple of transformed memory and proposals. |
|
|
|
- output_memory (Tensor): The transformed memory for obtaining |
|
top-k proposals, has shape (bs, num_feat_points, dim). |
|
- output_proposals (Tensor): The inverse-normalized proposal, has |
|
shape (batch_size, num_keys, 4) with the last dimension arranged |
|
as (cx, cy, w, h). |
|
""" |
|
|
|
bs = memory.size(0) |
|
proposals = [] |
|
_cur = 0 |
|
for lvl, (H, W) in enumerate(spatial_shapes): |
|
mask_flatten_ = memory_mask[:, |
|
_cur:(_cur + H * W)].view(bs, H, W, 1) |
|
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1).unsqueeze(-1) |
|
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1).unsqueeze(-1) |
|
|
|
grid_y, grid_x = torch.meshgrid( |
|
torch.linspace( |
|
0, H - 1, H, dtype=torch.float32, device=memory.device), |
|
torch.linspace( |
|
0, W - 1, W, dtype=torch.float32, device=memory.device)) |
|
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) |
|
|
|
scale = torch.cat([valid_W, valid_H], 1).view(bs, 1, 1, 2) |
|
grid = (grid.unsqueeze(0).expand(bs, -1, -1, -1) + 0.5) / scale |
|
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) |
|
proposal = torch.cat((grid, wh), -1).view(bs, -1, 4) |
|
proposals.append(proposal) |
|
_cur += (H * W) |
|
output_proposals = torch.cat(proposals, 1) |
|
output_proposals_valid = ((output_proposals > 0.01) & |
|
(output_proposals < 0.99)).all( |
|
-1, keepdim=True) |
|
|
|
output_proposals = torch.log(output_proposals / (1 - output_proposals)) |
|
output_proposals = output_proposals.masked_fill( |
|
memory_mask.unsqueeze(-1), float('inf')) |
|
output_proposals = output_proposals.masked_fill( |
|
~output_proposals_valid, float('inf')) |
|
|
|
output_memory = memory |
|
output_memory = output_memory.masked_fill( |
|
memory_mask.unsqueeze(-1), float(0)) |
|
output_memory = output_memory.masked_fill(~output_proposals_valid, |
|
float(0)) |
|
output_memory = self.memory_trans_fc(output_memory) |
|
output_memory = self.memory_trans_norm(output_memory) |
|
|
|
return output_memory, output_proposals |
|
|
|
@staticmethod |
|
def get_proposal_pos_embed(proposals: Tensor, |
|
num_pos_feats: int = 128, |
|
temperature: int = 10000) -> Tensor: |
|
"""Get the position embedding of the proposal. |
|
|
|
Args: |
|
proposals (Tensor): Not normalized proposals, has shape |
|
(bs, num_queries, 4) with the last dimension arranged as |
|
(cx, cy, w, h). |
|
num_pos_feats (int, optional): The feature dimension for each |
|
position along x, y, w, and h-axis. Note the final returned |
|
dimension for each position is 4 times of num_pos_feats. |
|
Default to 128. |
|
temperature (int, optional): The temperature used for scaling the |
|
position embedding. Defaults to 10000. |
|
|
|
Returns: |
|
Tensor: The position embedding of proposal, has shape |
|
(bs, num_queries, num_pos_feats * 4), with the last dimension |
|
arranged as (cx, cy, w, h) |
|
""" |
|
scale = 2 * math.pi |
|
dim_t = torch.arange( |
|
num_pos_feats, dtype=torch.float32, device=proposals.device) |
|
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats) |
|
|
|
proposals = proposals.sigmoid() * scale |
|
|
|
pos = proposals[:, :, :, None] / dim_t |
|
|
|
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), |
|
dim=4).flatten(2) |
|
return pos |
|
|