ACE-Plus / models /flux.py
chaojiemao's picture
modify ace flux
0d206f3
raw
history blame
38.3 kB
import math, torch
from collections import OrderedDict
from functools import partial
from einops import rearrange, repeat
from scepter.modules.model.base_model import BaseModel
from scepter.modules.model.registry import BACKBONES
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
from torch import Tensor, nn
from torch.nn.utils.rnn import pad_sequence
from torch.utils.checkpoint import checkpoint_sequential
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
MLPEmbedder, SingleStreamBlock,
timestep_embedding, DoubleStreamBlockACE, SingleStreamBlockACE)
@BACKBONES.register_class()
class Flux(BaseModel):
"""
Transformer backbone Diffusion model with RoPE.
"""
para_dict = {
"IN_CHANNELS": {
"value": 64,
"description": "model's input channels."
},
"OUT_CHANNELS": {
"value": 64,
"description": "model's output channels."
},
"HIDDEN_SIZE": {
"value": 1024,
"description": "model's hidden size."
},
"NUM_HEADS": {
"value": 16,
"description": "number of heads in the transformer."
},
"AXES_DIM": {
"value": [16, 56, 56],
"description": "dimensions of the axes of the positional encoding."
},
"THETA": {
"value": 10_000,
"description": "theta for positional encoding."
},
"VEC_IN_DIM": {
"value": 768,
"description": "dimension of the vector input."
},
"GUIDANCE_EMBED": {
"value": False,
"description": "whether to use guidance embedding."
},
"CONTEXT_IN_DIM": {
"value": 4096,
"description": "dimension of the context input."
},
"MLP_RATIO": {
"value": 4.0,
"description": "ratio of mlp hidden size to hidden size."
},
"QKV_BIAS": {
"value": True,
"description": "whether to use bias in qkv projection."
},
"DEPTH": {
"value": 19,
"description": "number of transformer blocks."
},
"DEPTH_SINGLE_BLOCKS": {
"value": 38,
"description": "number of transformer blocks in the single stream block."
},
"USE_GRAD_CHECKPOINT": {
"value": False,
"description": "whether to use gradient checkpointing."
},
"ATTN_BACKEND": {
"value": "pytorch",
"description": "backend for the transformer blocks, 'pytorch' or 'flash_attn'."
}
}
def __init__(
self,
cfg,
logger = None
):
super().__init__(cfg, logger=logger)
self.in_channels = cfg.IN_CHANNELS
self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels)
hidden_size = cfg.get("HIDDEN_SIZE", 1024)
num_heads = cfg.get("NUM_HEADS", 16)
axes_dim = cfg.AXES_DIM
theta = cfg.THETA
vec_in_dim = cfg.VEC_IN_DIM
self.guidance_embed = cfg.GUIDANCE_EMBED
context_in_dim = cfg.CONTEXT_IN_DIM
mlp_ratio = cfg.MLP_RATIO
qkv_bias = cfg.QKV_BIAS
depth = cfg.DEPTH
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False)
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch")
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None)
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None)
self.blackforest_lora_model = cfg.get("BLACKFOREST_LORA_MODEL", None)
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None)
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
pe_dim = hidden_size // num_heads
if sum(axes_dim) != pe_dim:
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim= axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
backend=self.attn_backend
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def prepare_input(self, x, context, y, x_shape=None):
# x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360]
bs, c, h, w = x.shape
x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
x_id = torch.zeros(h // 2, w // 2, 3)
x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None]
x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :]
x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros(bs, context.shape[1], 3)
return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w
def unpack(self, x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height/2),
w=math.ceil(width/2),
ph=2,
pw=2,
)
# def merge_diffuser_lora(self, ori_sd, lora_sd, scale = 1.0):
# key_map = {
# "single_blocks.{}.linear1.weight": {"key_list": [
# ["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight",
# "transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight"],
# ["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight",
# "transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight"],
# ["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight",
# "transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight"],
# ["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight",
# "transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight"]
# ], "num": 38},
# "single_blocks.{}.modulation.lin.weight": {"key_list": [
# ["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight",
# "transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight"],
# ], "num": 38},
# "single_blocks.{}.linear2.weight": {"key_list": [
# ["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight",
# "transformer.single_transformer_blocks.{}.proj_out.lora_B.weight"],
# ], "num": 38},
# "double_blocks.{}.txt_attn.qkv.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight"],
# ["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight"],
# ["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight"],
# ], "num": 19},
# "double_blocks.{}.img_attn.qkv.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.to_q.lora_B.weight"],
# ["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.to_k.lora_B.weight"],
# ["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.to_v.lora_B.weight"],
# ], "num": 19},
# "double_blocks.{}.img_attn.proj.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight"]
# ], "num": 19},
# "double_blocks.{}.txt_attn.proj.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight",
# "transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight"]
# ], "num": 19},
# "double_blocks.{}.img_mlp.0.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight",
# "transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight"]
# ], "num": 19},
# "double_blocks.{}.img_mlp.2.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight",
# "transformer.transformer_blocks.{}.ff.net.2.lora_B.weight"]
# ], "num": 19},
# "double_blocks.{}.txt_mlp.0.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight",
# "transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight"]
# ], "num": 19},
# "double_blocks.{}.txt_mlp.2.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight",
# "transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight"]
# ], "num": 19},
# "double_blocks.{}.img_mod.lin.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight",
# "transformer.transformer_blocks.{}.norm1.linear.lora_B.weight"]
# ], "num": 19},
# "double_blocks.{}.txt_mod.lin.weight": {"key_list": [
# ["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight",
# "transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight"]
# ], "num": 19}
# }
# have_lora_keys = 0
# for k, v in key_map.items():
# key_list = v["key_list"]
# block_num = v["num"]
# for block_id in range(block_num):
# current_weight_list = []
# for k_list in key_list:
# current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0),
# lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0)
# current_weight_list.append(current_weight)
# current_weight = torch.cat(current_weight_list, dim=0)
# ori_sd[k.format(block_id)] += scale*current_weight
# have_lora_keys += 1
# self.logger.info(f"merge_swift_lora loads lora'parameters {have_lora_keys}")
# return ori_sd
def merge_diffuser_lora(self, ori_sd, lora_sd, scale=1.0):
key_map = {
"single_blocks.{}.linear1.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]],
["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]],
["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]],
["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight", [9216, 21504]]
], "num": 38},
"single_blocks.{}.modulation.lin.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight", [0, 9216]],
], "num": 38},
"single_blocks.{}.linear2.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.{}.proj_out.lora_B.weight", [0, 3072]],
], "num": 38},
"double_blocks.{}.txt_attn.qkv.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight", [0, 3072]],
["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight", [3072, 6144]],
["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight", [6144, 9216]],
], "num": 19},
"double_blocks.{}.img_attn.qkv.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]],
["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]],
["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]],
], "num": 19},
"double_blocks.{}.img_attn.proj.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.txt_attn.proj.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.img_mlp.0.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight", [0, 12288]]
], "num": 19},
"double_blocks.{}.img_mlp.2.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.{}.ff.net.2.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.txt_mlp.0.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight", [0, 12288]]
], "num": 19},
"double_blocks.{}.txt_mlp.2.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.img_mod.lin.weight": {"key_list": [
["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.{}.norm1.linear.lora_B.weight", [0, 18432]]
], "num": 19},
"double_blocks.{}.txt_mod.lin.weight": {"key_list": [
["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight", [0, 18432]]
], "num": 19}
}
cover_lora_keys = set()
cover_ori_keys = set()
for k, v in key_map.items():
key_list = v["key_list"]
block_num = v["num"]
for block_id in range(block_num):
for k_list in key_list:
if k_list[0].format(block_id) in lora_sd and k_list[1].format(block_id) in lora_sd:
cover_lora_keys.add(k_list[0].format(block_id))
cover_lora_keys.add(k_list[1].format(block_id))
current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0),
lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0)
ori_sd[k.format(block_id)][k_list[2][0]:k_list[2][1], ...] += scale * current_weight
cover_ori_keys.add(k.format(block_id))
# lora_sd.pop(k_list[0].format(block_id))
# lora_sd.pop(k_list[1].format(block_id))
self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n"
f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n"
f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}")
return ori_sd
def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0):
have_lora_keys = {}
for k, v in lora_sd.items():
k = k[len("model."):] if k.startswith("model.") else k
ori_key = k.split("lora")[0] + "weight"
if ori_key not in ori_sd:
raise f"{ori_key} should in the original statedict"
if ori_key not in have_lora_keys:
have_lora_keys[ori_key] = {}
if "lora_A" in k:
have_lora_keys[ori_key]["lora_A"] = v
elif "lora_B" in k:
have_lora_keys[ori_key]["lora_B"] = v
else:
raise NotImplementedError
self.logger.info(f"merge_swift_lora loads lora'parameters {len(have_lora_keys)}")
for key, v in have_lora_keys.items():
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
ori_sd[key] += scale * current_weight
return ori_sd
def merge_blackforest_lora(self, ori_sd, lora_sd, scale = 1.0):
have_lora_keys = {}
cover_lora_keys = set()
cover_ori_keys = set()
for k, v in lora_sd.items():
if "lora" in k:
ori_key = k.split("lora")[0] + "weight"
if ori_key not in ori_sd:
raise f"{ori_key} should in the original statedict"
if ori_key not in have_lora_keys:
have_lora_keys[ori_key] = {}
if "lora_A" in k:
have_lora_keys[ori_key]["lora_A"] = v
cover_lora_keys.add(k)
cover_ori_keys.add(ori_key)
elif "lora_B" in k:
have_lora_keys[ori_key]["lora_B"] = v
cover_lora_keys.add(k)
cover_ori_keys.add(ori_key)
else:
if k in ori_sd:
ori_sd[k] = v
cover_lora_keys.add(k)
cover_ori_keys.add(k)
else:
print("unsurpport keys: ", k)
self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n"
f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n"
f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}")
for key, v in have_lora_keys.items():
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
# print(key, ori_sd[key].shape, current_weight.shape)
ori_sd[key] += scale * current_weight
return ori_sd
def load_pretrained_model(self, pretrained_model):
if next(self.parameters()).device.type == 'meta':
map_location = torch.device(we.device_id)
safe_device = we.device_id
else:
map_location = "cpu"
safe_device = "cpu"
if pretrained_model is not None:
with FS.get_from(pretrained_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
sd = load_safetensors(local_model, device=safe_device)
else:
sd = torch.load(local_model, map_location=map_location, weights_only=True)
if "state_dict" in sd:
sd = sd["state_dict"]
if "model" in sd:
sd = sd["model"]["model"]
new_ckpt = OrderedDict()
for k, v in sd.items():
if k in ("img_in.weight"):
model_p = self.state_dict()[k]
if v.shape != model_p.shape:
expanded_state_dict_weight = torch.zeros_like(model_p, device=v.device)
slices = tuple(slice(0, dim) for dim in v.shape)
expanded_state_dict_weight[slices] = v
new_ckpt[k] = expanded_state_dict_weight
else:
new_ckpt[k] = v
else:
new_ckpt[k] = v
if self.lora_model is not None:
with FS.get_from(self.lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=safe_device)
else:
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
new_ckpt = self.merge_diffuser_lora(new_ckpt, lora_sd)
if self.swift_lora_model is not None:
if not isinstance(self.swift_lora_model, list):
self.swift_lora_model = [self.swift_lora_model]
for lora_model in self.swift_lora_model:
self.logger.info(f"load swift lora model: {lora_model}")
with FS.get_from(lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=safe_device)
else:
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
new_ckpt = self.merge_swift_lora(new_ckpt, lora_sd)
if self.blackforest_lora_model is not None:
with FS.get_from(self.blackforest_lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=safe_device)
else:
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
new_ckpt = self.merge_blackforest_lora(new_ckpt, lora_sd)
adapter_ckpt = {}
if self.pretrain_adapter is not None:
with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter:
if local_adapter.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
adapter_ckpt = load_safetensors(local_adapter, device=safe_device)
else:
adapter_ckpt = torch.load(local_adapter, map_location=map_location, weights_only=True)
new_ckpt.update(adapter_ckpt)
missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True)
self.logger.info(
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys'
)
if len(missing) > 0:
self.logger.info(f'Missing Keys:\n {missing}')
if len(unexpected) > 0:
self.logger.info(f'\nUnexpected Keys:\n {unexpected}')
def forward(
self,
x: Tensor,
t: Tensor,
cond: dict = {},
guidance: Tensor | None = None,
gc_seg: int = 0
) -> Tensor:
x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"])
# running on sequences img
x = self.img_in(x)
vec = self.time_in(timestep_embedding(t, 256))
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, x_ids), dim=1)
pe = self.pe_embedder(ids)
kwargs = dict(
vec=vec,
pe=pe,
txt_length=txt.shape[1],
)
x = torch.cat((txt, x), 1)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.double_blocks],
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.double_blocks:
x = block(x, **kwargs)
kwargs = dict(
vec=vec,
pe=pe,
)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.single_blocks],
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.single_blocks:
x = block(x, **kwargs)
x = x[:, txt.shape[1] :, ...]
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
x = self.unpack(x, h, w)
return x
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
Flux.para_dict,
set_name=True)
@BACKBONES.register_class()
class ACEFlux(Flux):
'''
cat[x_seq, edit_seq]
pe[x_seq] pe[edit_seq]
'''
def __init__(
self,
cfg,
logger=None
):
super().__init__(cfg, logger=logger)
self.in_channels = cfg.IN_CHANNELS
self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels)
hidden_size = cfg.get("HIDDEN_SIZE", 1024)
num_heads = cfg.get("NUM_HEADS", 16)
axes_dim = cfg.AXES_DIM
theta = cfg.THETA
vec_in_dim = cfg.VEC_IN_DIM
self.guidance_embed = cfg.GUIDANCE_EMBED
context_in_dim = cfg.CONTEXT_IN_DIM
mlp_ratio = cfg.MLP_RATIO
qkv_bias = cfg.QKV_BIAS
depth = cfg.DEPTH
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False)
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch")
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None)
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None)
self.blackforest_lora_model = cfg.get("BLACKFOREST_LORA_MODEL", None)
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None)
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
pe_dim = hidden_size // num_heads
if sum(axes_dim) != pe_dim:
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlockACE(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
backend=self.attn_backend
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlockACE(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def prepare_input(self, x, cond, *args, **kwargs):
context, y = cond["context"], cond["y"]
# import pdb;pdb.set_trace()
batch_shift = []
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
for ix, shape, is_align in zip(x, cond["x_shapes"], cond['align']):
# unpack image from sequence
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
c, h, w = ix.shape
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
ix_id = torch.zeros(h // 2, w // 2, 3)
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
batch_shift.append(w // 2) if is_align < 1 else batch_shift.append(0)
ix_id = rearrange(ix_id, "h w c -> (h w) c")
ix = self.img_in(ix)
x_list.append(ix)
x_id_list.append(ix_id)
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
x_seq_length.append(ix.shape[0])
x = pad_sequence(tuple(x_list), batch_first=True)
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
if 'edit' in cond and sum(len(e) for e in cond['edit']) > 0:
batch_frames, batch_frames_ids = [], []
for i, edit in enumerate(cond['edit']):
batch_frames.append([])
batch_frames_ids.append([])
for ie in edit:
ie = ie.squeeze(0)
c, h, w = ie.shape
ie = rearrange(ie, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
ie_id = torch.zeros(h // 2, w // 2, 3)
ie_id[..., 1] = ie_id[..., 1] + torch.arange(h // 2)[:, None]
ie_id[..., 2] = ie_id[..., 2] + torch.arange(batch_shift[i], batch_shift[i] + w // 2)[None, :]
ie_id = rearrange(ie_id, "h w c -> (h w) c")
batch_frames[i].append(ie)
batch_frames_ids[i].append(ie_id)
edit_list, edit_id_list, edit_mask_x_list = [], [], []
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
proj_frames = []
for idx, one_frame in enumerate(frames):
one_frame = self.img_in(one_frame)
proj_frames.append(one_frame)
ie = torch.cat(proj_frames, dim=0)
ie_id = torch.cat(frame_ids, dim=0)
edit_list.append(ie)
edit_id_list.append(ie_id)
edit_mask_x_list.append(torch.ones(ie.shape[0]).to(ie.device, non_blocking=True).bool())
edit = pad_sequence(tuple(edit_list), batch_first=True)
edit_ids = pad_sequence(tuple(edit_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
edit_mask_x = pad_sequence(tuple(edit_mask_x_list), batch_first=True)
else:
edit, edit_ids, edit_mask_x = None, None, None
txt_list, mask_txt_list, y_list = [], [], []
for sample_id, (ctx, yy) in enumerate(zip(context, y)):
txt_list.append(self.txt_in(ctx.to(x)))
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool())
y_list.append(yy.to(x))
txt = pad_sequence(tuple(txt_list), batch_first=True)
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x)
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True)
y = torch.cat(y_list, dim=0)
return x, x_ids, edit, edit_ids, txt, txt_ids, y, mask_x, edit_mask_x, mask_txt, x_seq_length
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor:
x_list = []
image_shapes = cond["x_shapes"]
for u, shape, seq_length in zip(x, image_shapes, x_seq_length):
height, width = shape
h, w = math.ceil(height / 2), math.ceil(width / 2)
u = rearrange(
u[:h * w, ...],
"(h w) (c ph pw) -> (h ph w pw) c",
h=h,
w=w,
ph=2,
pw=2,
)
x_list.append(u)
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1)
return x
def forward(
self,
x: Tensor,
t: Tensor,
cond: dict = {},
guidance: Tensor | None = None,
gc_seg: int = 0,
**kwargs
) -> Tensor:
x, x_ids, edit, edit_ids, txt, txt_ids, y, mask_x, edit_mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond)
# running on sequences img
# condition use zero t
x_length = x.shape[1]
vec = self.time_in(timestep_embedding(t, 256))
if edit is not None:
edit_vec = self.time_in(timestep_embedding(t * 0, 256))
# print("edit_vec", torch.sum(edit_vec))
else:
edit_vec = None
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
if edit is not None:
edit_vec = edit_vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
if edit is not None:
edit_vec = edit_vec + self.vector_in(y)
ids = torch.cat((txt_ids, x_ids, edit_ids), dim=1)
mask_aside = torch.cat((mask_txt, mask_x, edit_mask_x), dim=1)
x = torch.cat((txt, x, edit), 1)
else:
ids = torch.cat((txt_ids, x_ids), dim=1)
mask_aside = torch.cat((mask_txt, mask_x), dim=1)
x = torch.cat((txt, x), 1)
pe = self.pe_embedder(ids)
mask = mask_aside[:, None, :] * mask_aside[:, :, None]
kwargs = dict(
vec=vec,
pe=pe,
mask=mask,
txt_length=txt.shape[1],
x_length=x_length,
edit_vec=edit_vec,
)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.double_blocks],
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
input=x,
use_reentrant=False
)
else:
for idx, block in enumerate(self.double_blocks):
# print("double block", idx)
x = block(x, **kwargs)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.single_blocks],
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
input=x,
use_reentrant=False
)
else:
for idx, block in enumerate(self.single_blocks):
# print("single block", idx)
x = block(x, **kwargs)
x = x[:, txt.shape[1]:txt.shape[1] + x_length, ...]
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
x = self.unpack(x, cond, seq_length_list)
return x
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
ACEFlux.para_dict,
set_name=True)