ACE-Chat / ace_inference.py
chaojiemao's picture
Update ace_inference.py
5b0cd30 verified
raw
history blame
24.5 kB
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import math
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from PIL import Image
import torchvision.transforms as T
from scepter.modules.model.registry import DIFFUSIONS
from scepter.modules.model.utils.basic_utils import check_list_of_list
from scepter.modules.model.utils.basic_utils import \
pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor
from scepter.modules.model.utils.basic_utils import (
to_device, unpack_tensor_into_imagelist)
from scepter.modules.utils.distribute import we
from scepter.modules.utils.logger import get_logger
from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model
def process_edit_image(images,
masks,
tasks,
max_seq_len=1024,
max_aspect_ratio=4,
d=16,
**kwargs):
if not isinstance(images, list):
images = [images]
if not isinstance(masks, list):
masks = [masks]
if not isinstance(tasks, list):
tasks = [tasks]
img_tensors = []
mask_tensors = []
for img, mask, task in zip(images, masks, tasks):
if mask is None or mask == '':
mask = Image.new('L', img.size, 0)
W, H = img.size
if H / W > max_aspect_ratio:
img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
elif W / H > max_aspect_ratio:
img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])
H, W = img.height, img.width
scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
rH = int(H * scale) // d * d # ensure divisible by self.d
rW = int(W * scale) // d * d
img = TF.resize(img, (rH, rW),
interpolation=TF.InterpolationMode.BICUBIC)
mask = TF.resize(mask, (rH, rW),
interpolation=TF.InterpolationMode.NEAREST_EXACT)
mask = np.asarray(mask)
mask = np.where(mask > 128, 1, 0)
mask = mask.astype(
np.float32) if np.any(mask) else np.ones_like(mask).astype(
np.float32)
img_tensor = TF.to_tensor(img).to(we.device_id)
img_tensor = TF.normalize(img_tensor,
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
mask_tensor = TF.to_tensor(mask).to(we.device_id)
if task in ['inpainting', 'Try On', 'Inpainting']:
mask_indicator = mask_tensor.repeat(3, 1, 1)
img_tensor[mask_indicator == 1] = -1.0
img_tensors.append(img_tensor)
mask_tensors.append(mask_tensor)
return img_tensors, mask_tensors
class TextEmbedding(nn.Module):
def __init__(self, embedding_shape):
super().__init__()
self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
class RefinerInference(DiffusionInference):
def init_from_cfg(self, cfg):
super().init_from_cfg(cfg)
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION, logger=self.logger) \
if cfg.MODEL.have('DIFFUSION') else None
self.max_seq_length = cfg.MODEL.get("MAX_SEQ_LENGTH", 4096)
assert self.diffusion is not None
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
self.dynamic_load(self.diffusion_model, 'diffusion_model')
self.dynamic_load(self.first_stage_model, 'first_stage_model')
@torch.no_grad()
def encode_first_stage(self, x, **kwargs):
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
def run_one_image(u):
zu = get_model(self.first_stage_model).encode(u)
if isinstance(zu, (tuple, list)):
zu = zu[0]
return zu
z = [run_one_image(u.unsqueeze(0) if u.dim == 3 else u) for u in x]
return z
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
c, H, W = image.shape
scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
rH = int(H * scale) // 16 * 16 # ensure divisible by self.d
rW = int(W * scale) // 16 * 16
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
return image
@torch.no_grad()
def decode_first_stage(self, z):
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
return [get_model(self.first_stage_model).decode(zu) for zu in z]
def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
noise = torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(h / 16),
2 * math.ceil(w / 16),
device=device,
dtype=dtype,
generator=torch.Generator(device=device).manual_seed(seed),
)
return noise
def refine(self,
x_samples=None,
prompt=None,
reverse_scale=-1.,
seed = 2024,
use_dynamic_model = False,
**kwargs
):
print(prompt)
value_input = copy.deepcopy(self.input)
x_samples = [self.upscale_resize(x) for x in x_samples]
noise = []
for i, x in enumerate(x_samples):
noise_ = self.noise_sample(1, x.shape[1],
x.shape[2], seed,
device = x.device)
noise.append(noise_)
noise, x_shapes = pack_imagelist_into_tensor(noise)
if reverse_scale > 0:
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
x_samples = [x.unsqueeze(0) for x in x_samples]
x_start = self.encode_first_stage(x_samples, **kwargs)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
x_start, _ = pack_imagelist_into_tensor(x_start)
else:
x_start = None
# cond stage
if use_dynamic_model: self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
function_name, dtype = self.get_function_info(self.cond_stage_model)
with torch.autocast('cuda',
enabled=dtype == 'float16',
dtype=getattr(torch, dtype)):
ctx = getattr(get_model(self.cond_stage_model),
function_name)(prompt)
ctx["x_shapes"] = x_shapes
if use_dynamic_model: self.dynamic_unload(self.cond_stage_model,
'cond_stage_model',
skip_loaded=True)
if use_dynamic_model: self.dynamic_load(self.diffusion_model, 'diffusion_model')
# UNet use input n_prompt
function_name, dtype = self.get_function_info(
self.diffusion_model)
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
solver_sample = value_input.get('sample', 'flow_euler')
sample_steps = value_input.get('sample_steps', 20)
guide_scale = value_input.get('guide_scale', 3.5)
if guide_scale is not None:
guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device,
dtype=noise.dtype)
else:
guide_scale = None
latent = self.diffusion.sample(
noise=noise,
sampler=solver_sample,
model=get_model(self.diffusion_model),
model_kwargs={"cond": ctx, "guidance": guide_scale},
steps=sample_steps,
show_progress=True,
guide_scale=guide_scale,
return_intermediate=None,
reverse_scale=reverse_scale,
x=x_start,
**kwargs).float()
latent = unpack_tensor_into_imagelist(latent, x_shapes)
if use_dynamic_model: self.dynamic_unload(self.diffusion_model,
'diffusion_model',
skip_loaded=True)
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
x_samples = self.decode_first_stage(latent)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
return x_samples
class ACEInference(DiffusionInference):
def __init__(self, logger=None):
if logger is None:
logger = get_logger(name='scepter')
self.logger = logger
self.loaded_model = {}
self.loaded_model_name = [
'diffusion_model', 'first_stage_model', 'cond_stage_model'
]
def init_from_cfg(self, cfg):
self.name = cfg.NAME
self.is_default = cfg.get('IS_DEFAULT', False)
self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
assert cfg.have('MODEL')
self.diffusion_model = self.infer_model(
cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
'DIFFUSION_MODEL',
None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
self.first_stage_model = self.infer_model(
cfg.MODEL.FIRST_STAGE_MODEL,
module_paras.get(
'FIRST_STAGE_MODEL',
None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
self.cond_stage_model = self.infer_model(
cfg.MODEL.COND_STAGE_MODEL,
module_paras.get(
'COND_STAGE_MODEL',
None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
self.refiner_model_cfg = cfg.get('REFINER_MODEL', None)
# self.refiner_scale = cfg.get('REFINER_SCALE', 0.)
# self.refiner_prompt = cfg.get('REFINER_PROMPT', "")
self.ace_prompt = cfg.get("ACE_PROMPT", [])
if self.refiner_model_cfg:
self.refiner_module = RefinerInference(self.logger)
self.refiner_module.init_from_cfg(self.refiner_model_cfg)
else:
self.refiner_module = None
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
logger=self.logger)
self.interpolate_func = lambda x: (F.interpolate(
x.unsqueeze(0),
scale_factor=1 / self.size_factor,
mode='nearest-exact') if x is not None else None)
self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
False)
if self.use_text_pos_embeddings:
self.text_position_embeddings = TextEmbedding(
(10, 4096)).eval().requires_grad_(False).to(we.device_id)
else:
self.text_position_embeddings = None
self.max_seq_len = cfg.MODEL.DIFFUSION_MODEL.MAX_SEQ_LEN
self.scale_factor = cfg.get('SCALE_FACTOR', 0.18215)
self.size_factor = cfg.get('SIZE_FACTOR', 8)
self.decoder_bias = cfg.get('DECODER_BIAS', 0)
self.default_n_prompt = cfg.get('DEFAULT_N_PROMPT', '')
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
self.dynamic_load(self.diffusion_model, 'diffusion_model')
self.dynamic_load(self.first_stage_model, 'first_stage_model')
@torch.no_grad()
def encode_first_stage(self, x, **kwargs):
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
with torch.autocast('cuda',
enabled=(dtype != 'float32'),
dtype=getattr(torch, dtype)):
z = [
self.scale_factor * get_model(self.first_stage_model)._encode(
i.unsqueeze(0).to(getattr(torch, dtype))) for i in x
]
return z
@torch.no_grad()
def decode_first_stage(self, z):
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
with torch.autocast('cuda',
enabled=(dtype != 'float32'),
dtype=getattr(torch, dtype)):
x = [
get_model(self.first_stage_model)._decode(
1. / self.scale_factor * i.to(getattr(torch, dtype)))
for i in z
]
return x
@torch.no_grad()
def __call__(self,
image=None,
mask=None,
prompt='',
task=None,
negative_prompt='',
output_height=512,
output_width=512,
sampler='ddim',
sample_steps=20,
guide_scale=4.5,
guide_rescale=0.5,
seed=-1,
history_io=None,
tar_index=0,
**kwargs):
input_image, input_mask = image, mask
g = torch.Generator(device=we.device_id)
seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
g.manual_seed(int(seed))
if input_image is not None:
# assert isinstance(input_image, list) and isinstance(input_mask, list)
if task is None:
task = [''] * len(input_image)
if not isinstance(prompt, list):
prompt = [prompt] * len(input_image)
if history_io is not None and len(history_io) > 0:
his_image, his_maks, his_prompt, his_task = history_io[
'image'], history_io['mask'], history_io[
'prompt'], history_io['task']
assert len(his_image) == len(his_maks) == len(
his_prompt) == len(his_task)
input_image = his_image + input_image
input_mask = his_maks + input_mask
task = his_task + task
prompt = his_prompt + [prompt[-1]]
prompt = [
pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
for i, pp in enumerate(prompt)
]
edit_image, edit_image_mask = process_edit_image(
input_image, input_mask, task, max_seq_len=self.max_seq_len)
image, image_mask = edit_image[tar_index], edit_image_mask[
tar_index]
edit_image, edit_image_mask = [edit_image], [edit_image_mask]
else:
edit_image = edit_image_mask = [[]]
image = torch.zeros(
size=[3, int(output_height),
int(output_width)])
image_mask = torch.ones(
size=[1, int(output_height),
int(output_width)])
if not isinstance(prompt, list):
prompt = [prompt]
image, image_mask, prompt = [image], [image_mask], [prompt]
assert check_list_of_list(prompt) and check_list_of_list(
edit_image) and check_list_of_list(edit_image_mask)
# Assign Negative Prompt
if isinstance(negative_prompt, list):
negative_prompt = negative_prompt[0]
assert isinstance(negative_prompt, str)
n_prompt = copy.deepcopy(prompt)
for nn_p_id, nn_p in enumerate(n_prompt):
assert isinstance(nn_p, list)
n_prompt[nn_p_id][-1] = negative_prompt
is_txt_image = sum([len(e_i) for e_i in edit_image]) < 1
image = to_device(image)
refiner_scale = kwargs.pop("refiner_scale", 0.0)
refiner_prompt = kwargs.pop("refiner_prompt", "")
use_ace = kwargs.pop("use_ace", True)
# <= 0 use ace as the txt2img generator.
if use_ace and (not is_txt_image or refiner_scale <= 0):
ctx, null_ctx = {}, {}
# Get Noise Shape
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
x = self.encode_first_stage(image)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
noise = [
torch.empty(*i.shape, device=we.device_id).normal_(generator=g)
for i in x
]
noise, x_shapes = pack_imagelist_into_tensor(noise)
ctx['x_shapes'] = null_ctx['x_shapes'] = x_shapes
image_mask = to_device(image_mask, strict=False)
cond_mask = [self.interpolate_func(i) for i in image_mask
] if image_mask is not None else [None] * len(image)
ctx['x_mask'] = null_ctx['x_mask'] = cond_mask
# Encode Prompt
if use_dynamic_model: self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
function_name, dtype = self.get_function_info(self.cond_stage_model)
cont, cont_mask = getattr(get_model(self.cond_stage_model),
function_name)(prompt)
cont, cont_mask = self.cond_stage_embeddings(prompt, edit_image, cont,
cont_mask)
null_cont, null_cont_mask = getattr(get_model(self.cond_stage_model),
function_name)(n_prompt)
null_cont, null_cont_mask = self.cond_stage_embeddings(
prompt, edit_image, null_cont, null_cont_mask)
if use_dynamic_model: self.dynamic_unload(self.cond_stage_model,
'cond_stage_model',
skip_loaded=False)
ctx['crossattn'] = cont
null_ctx['crossattn'] = null_cont
# Encode Edit Images
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
edit_image = [to_device(i, strict=False) for i in edit_image]
edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
e_img, e_mask = [], []
for u, m in zip(edit_image, edit_image_mask):
if u is None:
continue
if m is None:
m = [None] * len(u)
e_img.append(self.encode_first_stage(u, **kwargs))
e_mask.append([self.interpolate_func(i) for i in m])
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
null_ctx['edit'] = ctx['edit'] = e_img
null_ctx['edit_mask'] = ctx['edit_mask'] = e_mask
# Diffusion Process
if use_dynamic_model: self.dynamic_load(self.diffusion_model, 'diffusion_model')
function_name, dtype = self.get_function_info(self.diffusion_model)
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
latent = self.diffusion.sample(
noise=noise,
sampler=sampler,
model=get_model(self.diffusion_model),
model_kwargs=[{
'cond':
ctx,
'mask':
cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
}, {
'cond':
null_ctx,
'mask':
null_cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
}] if guide_scale is not None and guide_scale > 1 else {
'cond':
null_ctx,
'mask':
cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
},
steps=sample_steps,
show_progress=True,
seed=seed,
guide_scale=guide_scale,
guide_rescale=guide_rescale,
return_intermediate=None,
**kwargs)
if use_dynamic_model: self.dynamic_unload(self.diffusion_model,
'diffusion_model',
skip_loaded=False)
# Decode to Pixel Space
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
samples = unpack_tensor_into_imagelist(latent, x_shapes)
x_samples = self.decode_first_stage(samples)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=False)
x_samples = [x.squeeze(0) for x in x_samples]
else:
x_samples = image
if self.refiner_module and refiner_scale > 0:
if is_txt_image:
random.shuffle(self.ace_prompt)
input_refine_prompt = [self.ace_prompt[0] + refiner_prompt if p[0] == "" else p[0] for p in prompt]
input_refine_scale = -1.
else:
input_refine_prompt = [p[0].replace("{image}", "") + " " + refiner_prompt for p in prompt]
input_refine_scale = refiner_scale
print(input_refine_prompt)
x_samples = self.refiner_module.refine(x_samples,
reverse_scale = input_refine_scale,
prompt= input_refine_prompt,
seed=seed,
use_dynamic_model=self.use_dynamic_model)
imgs = [
torch.clamp((x_i.float() + 1.0) / 2.0 + self.decoder_bias / 255,
min=0.0,
max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
for x_i in x_samples
]
imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
return imgs
def cond_stage_embeddings(self, prompt, edit_image, cont, cont_mask):
if self.use_text_pos_embeddings and not torch.sum(
self.text_position_embeddings.pos) > 0:
identifier_cont, _ = getattr(get_model(self.cond_stage_model),
'encode')(self.text_indentifers,
return_mask=True)
self.text_position_embeddings.load_state_dict(
{'pos': identifier_cont[:, 0, :]})
cont_, cont_mask_ = [], []
for pp, edit, c, cm in zip(prompt, edit_image, cont, cont_mask):
if isinstance(pp, list):
cont_.append([c[-1], *c] if len(edit) > 0 else [c[-1]])
cont_mask_.append([cm[-1], *cm] if len(edit) > 0 else [cm[-1]])
else:
raise NotImplementedError
return cont_, cont_mask_