scdong's picture
Save local changes before rebase
8ff29c2
# Streamlit App: Counselor Assistant (XGBoost + Flan-T5)
import streamlit as st
import os
import pandas as pd
import json
import time
import csv
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from transformers import pipeline
# --- Page Setup ---
st.set_page_config(page_title="Counselor Assistant", layout="centered")
# --- Styling ---
st.markdown("""
<style>
.main { background-color: #f9f9f9; padding: 1rem 2rem; border-radius: 12px; }
h1 { color: #2c3e50; text-align: center; font-size: 2.4rem; }
.user { color: #1f77b4; font-weight: bold; }
.assistant { color: #2ca02c; font-weight: bold; }
</style>
""", unsafe_allow_html=True)
# --- App Header ---
st.title("๐Ÿง  Mental Health Counselor Assistant")
st.markdown("""
Welcome, counselor ๐Ÿ‘‹
This tool offers **AI-powered suggestions** to support you when responding to your patients.
### What it does:
- ๐Ÿงฉ Predicts what type of support is best: *Advice*, *Validation*, *Information*, or *Question*
- ๐Ÿ’ฌ Generates a suggestion using **Flan-T5**
- ๐Ÿ’พ Lets you save your session for reflection
This is here to support โ€” not replace โ€” your clinical instincts ๐Ÿ’š
""")
# --- Load and label dataset ---
df = pd.read_csv("dataset/Kaggle_Mental_Health_Conversations_train.csv")
df = df[['Context', 'Response']].dropna().copy()
keywords_to_labels = {
'advice': ['try', 'should', 'suggest', 'recommend'],
'validation': ['understand', 'feel', 'valid', 'normal'],
'information': ['cause', 'often', 'disorder', 'symptom'],
'question': ['how', 'what', 'why', 'have you']
}
def auto_label_response(response):
response = response.lower()
for label, keywords in keywords_to_labels.items():
if any(word in response for word in keywords):
return label
return 'information'
df['response_type'] = df['Response'].apply(auto_label_response)
df['combined_text'] = df['Context'] + " " + df['Response']
# Encode labels
le = LabelEncoder()
y = le.fit_transform(df['response_type'])
# TF-IDF + Train-test split
vectorizer = TfidfVectorizer(max_features=2000, ngram_range=(1, 2))
X = vectorizer.fit_transform(df['combined_text'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
# XGBoost model
xgb_model = XGBClassifier(
objective='multi:softmax',
num_class=len(le.classes_),
eval_metric='mlogloss',
use_label_encoder=False,
max_depth=6,
learning_rate=0.1,
n_estimators=100
)
xgb_model.fit(X_train, y_train)
# --- Load Flan-T5 Model ---
@st.cache_resource(show_spinner="Loading Flan-T5 model...")
def load_llm():
return pipeline("text2text-generation", model="google/flan-t5-base")
llm = load_llm()
# --- Utility Functions ---
def predict_response_type(user_input):
vec = vectorizer.transform([user_input])
pred = xgb_model.predict(vec)
proba = xgb_model.predict_proba(vec).max()
label = le.inverse_transform(pred)[0]
return label, proba
def build_prompt(user_input, response_type):
examples = {
"advice": 'Patient: "Iโ€™m having trouble sleeping."\nCounselor: "It might help to create a bedtime routine and avoid screens before sleep. Would you like to try that together?"',
"validation": 'Patient: "I feel like no one understands me."\nCounselor: "It makes sense that you feel that way โ€” your feelings are valid and you deserve to be heard."',
"information": 'Patient: "Why do I feel this way for no reason?"\nCounselor: "Sometimes our brains respond to stress or trauma in ways that are hard to detect. It could be anxiety or depression, and we can work through it together."',
"question": 'Patient: "I donโ€™t know what to do anymore."\nCounselor: "Can you tell me more about whatโ€™s been feeling difficult lately?"'
}
return f"""{examples[response_type]}
Patient: "{user_input}"
Counselor:"""
def generate_llm_response(user_input, response_type):
prompt = build_prompt(user_input, response_type)
start = time.time()
with st.spinner("Thinking through a helpful response for your patient..."):
result = llm(
prompt,
max_length=256,
min_length=60, # forces longer responses
do_sample=True,
temperature=0.9,
top_p=0.95,
num_return_sequences=1
)
end = time.time()
st.info(f"Response generated in {end - start:.1f} seconds")
return result[0]["generated_text"].strip()
def trim_memory(history, max_turns=6):
return history[-max_turns * 2:]
def save_conversation(history):
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
with open(f"logs/chat_log_{now}.csv", "w", newline='') as f:
writer = csv.writer(f)
writer.writerow(["Role", "Content", "Intent", "Confidence"])
for entry in history:
writer.writerow([
entry.get("role", ""),
entry.get("content", ""),
entry.get("label", ""),
round(float(entry.get("confidence", 0)) * 100)
])
st.success(f"Saved to chat_log_{now}.csv")
# --- Session Setup ---
if "history" not in st.session_state:
st.session_state.history = []
if "user_input" not in st.session_state:
st.session_state.user_input = ""
# --- Sample Prompts ---
with st.expander("๐Ÿ’ก Sample inputs you can try"):
st.markdown("""
- My patient is constantly feeling overwhelmed at work.
- A student says they panic every time they have to speak in class.
- Someone told me they think theyโ€™ll never feel okay again.
""")
# --- Text Input ---
MAX_WORDS = 1000
word_count = len(st.session_state.user_input.split())
st.markdown(f"**๐Ÿ“ Input Length:** {word_count} / {MAX_WORDS} words")
st.session_state.user_input = st.text_area(
"๐Ÿ’ฌ What did your patient say?",
value=st.session_state.user_input,
placeholder="e.g. I just feel like I'm never going to get better.",
height=100
)
# --- Buttons ---
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
send = st.button("๐Ÿ’ก Suggest Response")
with col2:
save = st.button("๐Ÿ“ Save This")
with col3:
reset = st.button("๐Ÿ” Reset")
# --- Main Logic ---
if send and st.session_state.user_input:
user_input = st.session_state.user_input
predicted_type, confidence = predict_response_type(user_input)
reply = generate_llm_response(user_input, predicted_type)
st.session_state.history.append({"role": "user", "content": user_input})
st.session_state.history.append({
"role": "assistant",
"content": reply,
"label": predicted_type,
"confidence": confidence
})
st.session_state.history = trim_memory(st.session_state.history)
if save:
save_conversation(st.session_state.history)
if reset:
st.session_state.history = []
st.session_state.user_input = ""
st.success("Conversation has been cleared.")
# --- Display Chat History ---
st.markdown("---")
for turn in st.session_state.history:
if turn["role"] == "user":
st.markdown(f"๐Ÿงโ€โ™€๏ธ **Patient:** {turn['content']}")
else:
st.markdown(f"๐Ÿ‘ฉโ€โš•๏ธ๐Ÿ‘จโ€โš•๏ธ **Suggested Counselor Response:** {turn['content']}")
st.caption(f"_Intent: {turn['label']} (Confidence: {turn['confidence']:.0%})_")
st.markdown("---")