ReIdentify / comp.py
anon
Upload 6 files
a9700a7 verified
raw
history blame
11 kB
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
import torch
from torch import nn
from torch.nn import init, MarginRankingLoss
from torch.optim import Adam
from distutils.version import LooseVersion
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
import math
from transformers import AutoConfig, AutoModel, AutoTokenizer
import nltk
import re
import torch.optim as optim
from tqdm import tqdm
from transformers import AutoModelForMaskedLM
import torch.nn.functional as F
import random
# In[2]:
maskis = []
n_y = []
class MyDataset(Dataset):
def __init__(self,file_name):
global maskis
global n_y
df = pd.read_csv(file_name)
df = df.fillna("")
self.inp_dicts = []
for r in range(df.shape[0]):
X_init = df['X'][r]
y = df['y'][r]
n_y.append(y)
nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y)
lb = ' '.join(nl).lower()
x = tokenizer.tokenize(lb)
num_sub_tokens_label = len(x)
X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label))
tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')
input_id_chunki = tokens['input_ids'][0].split(510)
input_id_chunks = []
mask_chunks = []
mask_chunki = tokens['attention_mask'][0].split(510)
for tensor in input_id_chunki:
input_id_chunks.append(tensor)
for tensor in mask_chunki:
mask_chunks.append(tensor)
xi = torch.full((1,), fill_value=101)
yi = torch.full((1,), fill_value=1)
zi = torch.full((1,), fill_value=102)
for r in range(len(input_id_chunks)):
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)
di = torch.full((1,), fill_value=0)
for i in range(len(input_id_chunks)):
pad_len = 512 - input_id_chunks[i].shape[0]
if pad_len > 0:
for p in range(pad_len):
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)
vb = torch.ones_like(input_id_chunks[0])
fg = torch.zeros_like(input_id_chunks[0])
maski = []
for l in range(len(input_id_chunks)):
masked_pos = []
for i in range(len(input_id_chunks[l])):
if input_id_chunks[l][i] == tokenizer.mask_token_id: #103
if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id:
continue
masked_pos.append(i)
maski.append(masked_pos)
maskis.append(maski)
while (len(input_id_chunks)<250):
input_id_chunks.append(vb)
mask_chunks.append(fg)
input_ids = torch.stack(input_id_chunks)
attention_mask = torch.stack(mask_chunks)
input_dict = {
'input_ids': input_ids.long(),
'attention_mask': attention_mask.int()
}
self.inp_dicts.append(input_dict)
del input_dict
del input_ids
del attention_mask
del maski
del mask_chunks
del input_id_chunks
del di
del fg
del vb
del mask_chunki
del input_id_chunki
del X_init
del y
del tokens
del x
del lb
del nl
del df
def __len__(self):
return len(self.inp_dicts)
def __getitem__(self,idx):
return self.inp_dicts[idx]
# In[3]:
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
base_model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
model.load_state_dict(torch.load('var_runs/model_26_2'))
model.eval()
base_model.eval()
myDs=MyDataset('d_t.csv')
train_loader=DataLoader(myDs,batch_size=1,shuffle=False)
# In[4]:
variable_names = [
# One-word Variable Names
'count', 'value', 'result', 'flag', 'max', 'min', 'data', 'input', 'output', 'name', 'index', 'status', 'error', 'message', 'price', 'quantity', 'total', 'length', 'size', 'score',
# Two-word Variable Names
'studentName', 'accountBalance', 'isFound', 'maxScore', 'userAge', 'carModel', 'bookTitle', 'arrayLength', 'employeeID', 'itemPrice', 'customerAddress', 'productCategory', 'orderNumber', 'transactionType', 'bankAccount', 'shippingMethod', 'deliveryDate', 'purchaseAmount', 'inventoryItem', 'salesRevenue',
# Three-word Variable Names
'numberOfStudents', 'averageTemperature', 'userIsLoggedIn', 'totalSalesAmount', 'employeeSalaryRate', 'maxAllowedAttempts', 'selectedOption', 'shippingAddress', 'manufacturingDate', 'connectionPool', 'customerAccountBalance', 'employeeSalaryReport', 'productInventoryCount', 'transactionProcessingStatus', 'userAuthenticationToken', 'orderShippingAddress', 'databaseConnectionPoolSize', 'vehicleEngineTemperature', 'sensorDataProcessingRate', 'employeePayrollSystem',
# Four-word Variable Names
'customerAccountBalanceValue', 'employeeSalaryReportData', 'productInventoryItemCount', 'transactionProcessingStatusFlag', 'userAuthenticationTokenKey', 'orderShippingAddressDetails', 'databaseConnectionPoolMaxSize', 'vehicleEngineTemperatureReading', 'sensorDataProcessingRateLimit', 'employeePayrollSystemData', 'customerOrderShippingAddress', 'productCatalogItemNumber', 'transactionProcessingSuccessFlag', 'userAuthenticationAccessToken', 'databaseConnectionPoolConfig', 'vehicleEngineTemperatureSensor', 'sensorDataProcessingRateLimitation', 'employeePayrollSystemConfiguration', 'customerAccountBalanceHistoryData', 'transactionProcessingStatusTracking'
]
var_list = []
for j in range(6):
d =[]
var_list.append(d)
for var in variable_names:
try:
var_list[len(tokenizer.tokenize(var))-1].append(var)
except:
continue
# In[5]:
tot_pll = 0.0
base_tot_pll = 0.0
loop = tqdm(train_loader, leave=True)
cntr = 0
for batch in loop:
maxi = torch.tensor(0.0, requires_grad=True)
for i in range(len(batch['input_ids'])):
cntr+=1
maski = maskis[cntr-1]
li = len(maski)
input_ids = batch['input_ids'][i][:li]
att_mask = batch['attention_mask'][i][:li]
y = n_y[cntr-1]
ty = tokenizer.encode(y)[1:-1]
num_sub_tokens_label = len(ty)
if num_sub_tokens_label > 6:
continue
print("Ground truth:", y)
m_y = random.choice(var_list[num_sub_tokens_label-1])
m_ty = tokenizer.encode(m_y)[1:-1]
print("Mock truth:", m_y)
# input_ids, att_mask = input_ids.to(device),att_mask.to(device)
outputs = model(input_ids, attention_mask = att_mask)
base_outputs = base_model(input_ids, attention_mask = att_mask)
last_hidden_state = outputs[0].squeeze()
base_last_hidden_state = base_outputs[0].squeeze()
l_o_l_sa = []
base_l_o_l_sa = []
sum_state = []
base_sum_state = []
for t in range(num_sub_tokens_label):
c = []
d = []
l_o_l_sa.append(c)
base_l_o_l_sa.append(d)
if len(maski) == 1:
masked_pos = maski[0]
for k in masked_pos:
for t in range(num_sub_tokens_label):
l_o_l_sa[t].append(last_hidden_state[k+t])
base_l_o_l_sa[t].append(base_last_hidden_state[k+t])
else:
for p in range(len(maski)):
masked_pos = maski[p]
for k in masked_pos:
for t in range(num_sub_tokens_label):
if (k+t) >= len(last_hidden_state[p]):
l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])])
base_l_o_l_sa[t].append(base_last_hidden_state[p+1][k+t-len(base_last_hidden_state[p])])
continue
l_o_l_sa[t].append(last_hidden_state[p][k+t])
base_l_o_l_sa[t].append(base_last_hidden_state[p][k+t])
for t in range(num_sub_tokens_label):
sum_state.append(l_o_l_sa[t][0])
base_sum_state.append(base_l_o_l_sa[t][0])
for i in range(len(l_o_l_sa[0])):
if i == 0:
continue
for t in range(num_sub_tokens_label):
sum_state[t] = sum_state[t] + l_o_l_sa[t][i]
base_sum_state[t] = base_sum_state[t] + base_l_o_l_sa[t][i]
yip = len(l_o_l_sa[0])
val = 0.0
m_val = 0.0
m_base_val = 0.0
base_val = 0.0
for t in range(num_sub_tokens_label):
sum_state[t] /= yip
base_sum_state[t] /= yip
probs = F.softmax(sum_state[t], dim=0)
base_probs = F.softmax(base_sum_state[t], dim=0)
val = val - torch.log(probs[ty[t]])
m_val = m_val - torch.log(probs[m_ty[t]])
base_val = base_val - torch.log(base_probs[ty[t]])
m_base_val = m_base_val - torch.log(base_probs[m_ty[t]])
val = val / num_sub_tokens_label
base_val = base_val / num_sub_tokens_label
m_val = m_val / num_sub_tokens_label
m_base_val = m_base_val / num_sub_tokens_label
print("Sent PLL:")
print(val)
print("Base Sent PLL:")
print(base_val)
print("Net % difference:")
diff = (val-base_val)*100/base_val
print(diff)
tot_pll += val
base_tot_pll+=base_val
print()
print()
print("Mock Sent PLL:")
print(m_val)
print("Mock Base Sent PLL:")
print(m_base_val)
print("Mock Net % difference:")
m_diff = (m_val-m_base_val)*100/m_base_val
print(m_diff)
for c in sum_state:
del c
for d in base_sum_state:
del d
del sum_state
del base_sum_state
for c in l_o_l_sa:
del c
for c in base_l_o_l_sa:
del c
del l_o_l_sa
del base_l_o_l_sa
del maski
del input_ids
del att_mask
del last_hidden_state
del base_last_hidden_state
print("Tot PLL: ", tot_pll)
print("Base Tot PLL: ", base_tot_pll)
# In[ ]: