|
import math |
|
import pprint |
|
|
|
import torch |
|
import transformers |
|
from transformers import LogitsWarper, is_torch_xpu_available |
|
from transformers.generation.logits_process import ( |
|
LogitNormalization, |
|
LogitsProcessor, |
|
LogitsProcessorList |
|
) |
|
|
|
from modules import shared |
|
from modules.logging_colors import logger |
|
|
|
global_scores = None |
|
|
|
|
|
class TemperatureLogitsWarperCustom(LogitsWarper): |
|
''' |
|
A copy of the original Transformers temperature logits warper. |
|
''' |
|
|
|
def __init__(self, temperature: float): |
|
if not isinstance(temperature, float) or not (temperature > 0): |
|
except_msg = ( |
|
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token " |
|
"scores will be invalid." |
|
) |
|
if isinstance(temperature, float) and temperature == 0.0: |
|
except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`." |
|
|
|
raise ValueError(except_msg) |
|
|
|
self.temperature = temperature |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
scores = scores / self.temperature |
|
return scores |
|
|
|
|
|
class DynamicTemperatureLogitsWarper(LogitsWarper): |
|
''' |
|
Dynamic temperature. |
|
''' |
|
|
|
def __init__(self, dynatemp_low: float, dynatemp_high: float, dynatemp_exponent: float): |
|
self.dynatemp_low = dynatemp_low |
|
self.dynatemp_high = dynatemp_high |
|
self.dynatemp_exponent = dynatemp_exponent |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
min_temp = self.dynatemp_low |
|
max_temp = self.dynatemp_high |
|
exponent_val = self.dynatemp_exponent |
|
|
|
|
|
probs = torch.softmax(scores, dim=-1) |
|
|
|
|
|
entropy = -1.0 * torch.where(probs > 0, probs * torch.log(probs), torch.zeros_like(probs)).sum() |
|
|
|
|
|
entropy = max(entropy, torch.tensor(1e-10)) |
|
|
|
|
|
num_valid_tokens = torch.sum(scores > -float('inf')).item() |
|
|
|
|
|
max_entropy = math.log(num_valid_tokens) |
|
|
|
|
|
max_entropy = max_entropy if max_entropy > 0.0 else 1e-10 |
|
|
|
|
|
normalized_entropy = entropy / max_entropy |
|
|
|
|
|
dyn_temp = min_temp + (max_temp - min_temp) * (normalized_entropy.pow(exponent_val)) |
|
|
|
|
|
scores = scores / dyn_temp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return scores |
|
|
|
|
|
class QuadraticSamplingLogitsWarper(LogitsWarper): |
|
''' |
|
Quadratic sampling with smoothing factor and smoothing curve parameters. |
|
''' |
|
|
|
def __init__(self, smoothing_factor, smoothing_curve): |
|
self.smoothing_factor = smoothing_factor |
|
self.smoothing_curve = smoothing_curve |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
|
|
|
|
max_logit = scores.max() |
|
diff = scores - max_logit |
|
k = (3 - self.smoothing_curve) / 2 |
|
s = (self.smoothing_curve - 1) / 2 |
|
|
|
|
|
transformed_logits = torch.where( |
|
scores != float('-inf'), |
|
-(k * self.smoothing_factor * diff**2) + (s * self.smoothing_factor * diff**3) + max_logit, |
|
scores |
|
) |
|
|
|
return transformed_logits |
|
|
|
|
|
class MinPLogitsWarper(LogitsWarper): |
|
def __init__(self, min_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): |
|
if min_p < 0 or min_p > 1.0: |
|
raise ValueError(f"`min_p` has to be a float >= 0 and <= 1, but is {min_p}") |
|
self.min_p = min_p |
|
self.filter_value = filter_value |
|
self.min_tokens_to_keep = min_tokens_to_keep |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
|
|
probs = torch.softmax(scores, dim=-1) |
|
|
|
top_probs, _ = probs.max(dim=-1, keepdim=True) |
|
|
|
scaled_min_p = self.min_p * top_probs |
|
|
|
tokens_to_remove = probs < scaled_min_p |
|
|
|
sorted_indices = torch.argsort(scores, descending=True, dim=-1) |
|
sorted_indices_to_remove = torch.gather(tokens_to_remove, dim=-1, index=sorted_indices) |
|
|
|
if self.min_tokens_to_keep > 1: |
|
|
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = False |
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) |
|
scores = scores.masked_fill(indices_to_remove, self.filter_value) |
|
return scores |
|
|
|
|
|
class TailFreeLogitsWarper(LogitsWarper): |
|
def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): |
|
tfs = float(tfs) |
|
if tfs < 0 or tfs > 1.0: |
|
raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}") |
|
self.tfs = tfs |
|
self.filter_value = filter_value |
|
self.min_tokens_to_keep = min_tokens_to_keep |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
sorted_logits, sorted_indices = torch.sort(scores, descending=True) |
|
probs = sorted_logits.softmax(dim=-1) |
|
|
|
|
|
d2 = probs.diff().diff().abs() |
|
normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True) |
|
normalized_d2_cdf = normalized_d2.cumsum(dim=-1) |
|
|
|
|
|
sorted_indices_to_remove = normalized_d2_cdf > self.tfs |
|
|
|
|
|
sorted_indices_to_remove = torch.cat( |
|
( |
|
torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device), |
|
sorted_indices_to_remove, |
|
torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device), |
|
), |
|
dim=-1, |
|
) |
|
|
|
if self.min_tokens_to_keep > 1: |
|
|
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 |
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) |
|
scores = scores.masked_fill(indices_to_remove, self.filter_value) |
|
return scores |
|
|
|
|
|
class TopALogitsWarper(LogitsWarper): |
|
def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): |
|
top_a = float(top_a) |
|
if top_a < 0 or top_a > 1.0: |
|
raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}") |
|
self.top_a = top_a |
|
self.filter_value = filter_value |
|
self.min_tokens_to_keep = min_tokens_to_keep |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
sorted_logits, sorted_indices = torch.sort(scores, descending=True) |
|
probs = sorted_logits.softmax(dim=-1) |
|
|
|
|
|
probs_max = probs[..., 0, None] |
|
sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a |
|
|
|
if self.min_tokens_to_keep > 1: |
|
|
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 |
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) |
|
scores = scores.masked_fill(indices_to_remove, self.filter_value) |
|
return scores |
|
|
|
|
|
class MirostatLogitsWarper(LogitsWarper): |
|
def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): |
|
if mirostat_mode not in [2]: |
|
raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}") |
|
|
|
self.mirostat_mode = mirostat_mode |
|
self.mirostat_eta = mirostat_eta |
|
self.mirostat_tau = mirostat_tau |
|
self.filter_value = filter_value |
|
self.min_tokens_to_keep = min_tokens_to_keep |
|
self.mu = 2 * self.mirostat_tau |
|
self.e = 0 |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
logits = scores[0] |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() |
|
|
|
|
|
for i, candidate in enumerate(prob_original): |
|
if candidate > 0 and -math.log2(candidate) > self.mu: |
|
if (i == 0): |
|
sorted_logits = sorted_logits[:1] |
|
else: |
|
sorted_logits = sorted_logits[:i] |
|
break |
|
|
|
|
|
if is_torch_xpu_available(): |
|
prob_topk = torch.softmax(sorted_logits, dim=0).to("xpu") |
|
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to("xpu") |
|
else: |
|
prob_topk = torch.softmax(sorted_logits, dim=0).to('cuda') |
|
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to('cuda') |
|
|
|
observed_surprise = -math.log2(prob_topk[prev_i]) |
|
self.e = observed_surprise - self.mirostat_tau |
|
|
|
|
|
self.mu -= self.mirostat_eta * self.e |
|
|
|
sorted_indices_to_remove = torch.ones_like(scores[0], dtype=torch.bool) |
|
sorted_indices_to_remove[prev_i] = False |
|
|
|
indices_to_remove = sorted_indices_to_remove.unsqueeze(0).scatter(1, sorted_indices.unsqueeze(0), sorted_indices_to_remove.unsqueeze(0)) |
|
scores = scores.masked_fill(indices_to_remove, self.filter_value) |
|
return scores |
|
|
|
|
|
class SpyLogitsWarper(LogitsWarper): |
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
global global_scores |
|
global_scores = scores |
|
return scores |
|
|
|
|
|
class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor): |
|
''' |
|
Copied from the transformers library |
|
''' |
|
|
|
def __init__(self, penalty: float, presence_penalty: float, frequency_penalty: float, _range: int): |
|
if not (penalty > 0): |
|
raise ValueError(f"`penalty` has to be strictly positive, but is {penalty}") |
|
|
|
self.penalty = penalty |
|
self.presence_penalty = presence_penalty |
|
self.frequency_penalty = frequency_penalty |
|
self._range = _range |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
input_ids = input_ids[:, -self._range:] |
|
|
|
|
|
|
|
for input_ids_row, scores_row in zip(input_ids, scores): |
|
unique_ids, counts = torch.unique(input_ids_row, return_counts=True) |
|
score = torch.gather(scores_row, 0, unique_ids) |
|
|
|
|
|
|
|
score = torch.where(score < 0, score * self.penalty, score / self.penalty) |
|
scores_row.scatter_(0, unique_ids, score) |
|
|
|
|
|
raw_presence_penalty = (counts > 0).to(scores.dtype) |
|
raw_frequency_penalty = counts.to(scores.dtype) |
|
additive_penalty = raw_presence_penalty * self.presence_penalty + raw_frequency_penalty * self.frequency_penalty |
|
scores_row.scatter_add_(0, unique_ids, -additive_penalty) |
|
|
|
return scores |
|
|
|
|
|
def get_logits_warper_patch(self, generation_config): |
|
|
|
|
|
if isinstance(generation_config.temperature, int): |
|
generation_config.temperature = float(generation_config.temperature) |
|
|
|
|
|
warpers = self._get_logits_warper_old(generation_config) |
|
|
|
|
|
|
|
for i in range(len(warpers)): |
|
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper': |
|
warpers[i] = TemperatureLogitsWarperCustom( |
|
generation_config.temperature, |
|
) |
|
|
|
|
|
warpers_to_add = LogitsProcessorList() |
|
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1 |
|
if generation_config.tfs is not None and 0.0 <= generation_config.tfs < 1.0: |
|
warpers_to_add.append( |
|
TailFreeLogitsWarper( |
|
tfs=generation_config.tfs, |
|
min_tokens_to_keep=min_tokens_to_keep |
|
) |
|
) |
|
|
|
if generation_config.top_a is not None and 0.0 < generation_config.top_a <= 1.0: |
|
warpers_to_add.append( |
|
TopALogitsWarper( |
|
top_a=generation_config.top_a, |
|
min_tokens_to_keep=min_tokens_to_keep |
|
) |
|
) |
|
|
|
if generation_config.min_p is not None and 0.0 < generation_config.min_p <= 1.0: |
|
warpers_to_add.append( |
|
MinPLogitsWarper( |
|
min_p=generation_config.min_p, |
|
min_tokens_to_keep=min_tokens_to_keep |
|
) |
|
) |
|
|
|
if generation_config.dynamic_temperature: |
|
warpers_to_add.append( |
|
DynamicTemperatureLogitsWarper( |
|
dynatemp_low=generation_config.dynatemp_low, |
|
dynatemp_high=generation_config.dynatemp_high, |
|
dynatemp_exponent=generation_config.dynatemp_exponent, |
|
) |
|
) |
|
|
|
if generation_config.smoothing_factor > 0: |
|
warpers_to_add.append( |
|
QuadraticSamplingLogitsWarper( |
|
smoothing_factor=generation_config.smoothing_factor, |
|
smoothing_curve=generation_config.smoothing_curve |
|
) |
|
) |
|
|
|
if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2: |
|
warpers_to_add.append( |
|
MirostatLogitsWarper( |
|
mirostat_mode=generation_config.mirostat_mode, |
|
mirostat_eta=generation_config.mirostat_eta, |
|
mirostat_tau=generation_config.mirostat_tau, |
|
min_tokens_to_keep=min_tokens_to_keep |
|
) |
|
) |
|
|
|
if len(warpers) > 0 and isinstance(warpers[-1], LogitNormalization): |
|
normalize = warpers.pop(-1) |
|
else: |
|
normalize = None |
|
|
|
warpers += warpers_to_add |
|
|
|
|
|
sampler_priority = generation_config.sampler_priority |
|
|
|
|
|
if generation_config.temperature_last: |
|
for param_name in ['temperature', 'dynamic_temperature', 'quadratic_sampling']: |
|
if param_name in sampler_priority: |
|
if param_name in sampler_priority: |
|
index = sampler_priority.index(param_name) |
|
sampler_priority.append(sampler_priority.pop(index)) |
|
else: |
|
sampler_priority.append(param_name) |
|
|
|
class_name_to_nickname = { |
|
'DynamicTemperatureLogitsWarper': 'dynamic_temperature', |
|
'EpsilonLogitsWarper': 'epsilon_cutoff', |
|
'EtaLogitsWarper': 'eta_cutoff', |
|
'MinPLogitsWarper': 'min_p', |
|
'MirostatLogitsWarper': 'mirostat', |
|
'QuadraticSamplingLogitsWarper': 'quadratic_sampling', |
|
'TailFreeLogitsWarper': 'tfs', |
|
'TemperatureLogitsWarperCustom': 'temperature', |
|
'TopALogitsWarper': 'top_a', |
|
'TopKLogitsWarper': 'top_k', |
|
'TopPLogitsWarper': 'top_p', |
|
'TypicalLogitsWarper': 'typical_p' |
|
} |
|
|
|
def custom_sort_key(obj): |
|
class_name = obj.__class__.__name__ |
|
|
|
|
|
if class_name not in class_name_to_nickname or class_name_to_nickname[class_name] not in sampler_priority: |
|
return float('inf') |
|
|
|
|
|
return sampler_priority.index(class_name_to_nickname[class_name]) |
|
|
|
|
|
warpers = sorted(warpers, key=custom_sort_key) |
|
if shared.args.verbose: |
|
logger.info("WARPERS=") |
|
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint([x.__class__.__name__ for x in warpers]) |
|
print() |
|
|
|
if normalize is not None: |
|
warpers.append(normalize) |
|
|
|
warpers.append(SpyLogitsWarper()) |
|
warpers = LogitsProcessorList(warpers) |
|
return warpers |
|
|
|
|
|
def get_logits_processor_patch(self, **kwargs): |
|
repetition_penalty = kwargs['generation_config'].repetition_penalty |
|
presence_penalty = kwargs['generation_config'].presence_penalty |
|
frequency_penalty = kwargs['generation_config'].frequency_penalty |
|
repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range |
|
do_rep_pen_hijack = (repetition_penalty > 1) or (presence_penalty != 0) or (frequency_penalty != 0) |
|
if do_rep_pen_hijack: |
|
kwargs['generation_config'].repetition_penalty = 1.1 |
|
|
|
result = self._get_logits_processor_old(**kwargs) |
|
|
|
if do_rep_pen_hijack: |
|
for i in range(len(result)): |
|
if result[i].__class__.__name__ == 'RepetitionPenaltyLogitsProcessor': |
|
result[i] = RepetitionPenaltyLogitsProcessorWithRange(repetition_penalty, presence_penalty, frequency_penalty, repetition_penalty_range) |
|
|
|
return result |
|
|
|
|
|
def generation_config_init_patch(self, **kwargs): |
|
self.__init___old(**kwargs) |
|
self.min_p = kwargs.pop("min_p", 0.0) |
|
self.dynamic_temperature = kwargs.pop("dynamic_temperature", False) |
|
self.dynatemp_low = kwargs.pop("dynatemp_low", 1) |
|
self.dynatemp_high = kwargs.pop("dynatemp_high", 1) |
|
self.dynatemp_exponent = kwargs.pop("dynatemp_exponent", 1) |
|
self.smoothing_factor = kwargs.pop("smoothing_factor", 0.0) |
|
self.smoothing_curve = kwargs.pop("smoothing_curve", 1.0) |
|
self.tfs = kwargs.pop("tfs", 1.0) |
|
self.top_a = kwargs.pop("top_a", 0.0) |
|
self.mirostat_mode = kwargs.pop("mirostat_mode", 0) |
|
self.mirostat_eta = kwargs.pop("mirostat_eta", 0.1) |
|
self.mirostat_tau = kwargs.pop("mirostat_tau", 5) |
|
self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0) |
|
self.presence_penalty = kwargs.pop("presence_penalty", 0) |
|
self.frequency_penalty = kwargs.pop("frequency_penalty", 0) |
|
self.temperature_last = kwargs.pop("temperature_last", False) |
|
self.sampler_priority = kwargs.pop("sampler_priority", ['temperature', 'dynamic_temperature', 'quadratic_sampling', 'top_k', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'min_p', 'mirostat']) |
|
|
|
|
|
def hijack_samplers(): |
|
transformers.GenerationMixin._get_logits_warper_old = transformers.GenerationMixin._get_logits_warper |
|
transformers.GenerationMixin._get_logits_warper = get_logits_warper_patch |
|
|
|
transformers.GenerationMixin._get_logits_processor_old = transformers.GenerationMixin._get_logits_processor |
|
transformers.GenerationMixin._get_logits_processor = get_logits_processor_patch |
|
|
|
transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__ |
|
transformers.GenerationConfig.__init__ = generation_config_init_patch |
|
|