sayakpaul HF staff commited on
Commit
b64b5e6
·
1 Parent(s): a1008bd

formatting.

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -5,7 +5,7 @@ from hub_utils import push_to_hub, save_model_card
5
 
6
  PRETRAINED_CKPT = "CompVis/stable-diffusion-v1-4"
7
  DESCRIPTION = """
8
- This Space lets you convert KerasCV Stable Diffusion weights to a format compatible with [Diffusers](https://github.com/huggingface/diffusers) 🧨. This allows users to fine-tune using KerasCV and use the fine-tuned weights in Diffusers taking advantage of its nifty features (like schedulers, fast attention, etc.). Specifically, the parameters are converted and then they are wrapped into a [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview). This pipeline is then pushed to the Hugging Face Hub given you have provided a `your_hf_token`.
9
 
10
  ## Notes (important)
11
 
@@ -18,7 +18,7 @@ This Space lets you convert KerasCV Stable Diffusion weights to a format compati
18
  * When providing the weights' links, ensure they're directly downloadable. Internally, the Space uses [`tf.keras.utils.get_file()`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/get_file) to retrieve the weights locally.
19
  * If you don't provide `your_hf_token` the converted pipeline won't be pushed.
20
 
21
- Check [here](https://github.com/huggingface/diffusers/blob/31be42209ddfdb69d9640a777b32e9b5c6259bf0/examples/dreambooth/train_dreambooth_lora.py#L975) for an example on how you can change the scheduler of an already initialized pipeline.
22
  """
23
 
24
 
@@ -27,6 +27,7 @@ def run(hf_token, text_encoder_weights, unet_weights, repo_prefix):
27
  text_encoder_weights = None
28
  if unet_weights == "":
29
  unet_weights = None
 
30
  pipeline = run_conversion(text_encoder_weights, unet_weights)
31
  output_path = "kerascv_sd_diffusers_pipeline"
32
  pipeline.save_pretrained(output_path)
 
5
 
6
  PRETRAINED_CKPT = "CompVis/stable-diffusion-v1-4"
7
  DESCRIPTION = """
8
+ This Space lets you convert KerasCV Stable Diffusion weights to a format compatible with [Diffusers](https://github.com/huggingface/diffusers) 🧨. This allows users to fine-tune using KerasCV and use the fine-tuned weights in Diffusers taking advantage of its nifty features (like [schedulers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers), [fast attention](https://huggingface.co/docs/diffusers/optimization/fp16), etc.). Specifically, the Keras weights are first converted to PyTorch and then they are wrapped into a [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview). This pipeline is then pushed to the Hugging Face Hub given you have provided `your_hf_token`.
9
 
10
  ## Notes (important)
11
 
 
18
  * When providing the weights' links, ensure they're directly downloadable. Internally, the Space uses [`tf.keras.utils.get_file()`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/get_file) to retrieve the weights locally.
19
  * If you don't provide `your_hf_token` the converted pipeline won't be pushed.
20
 
21
+ Check [here](https://github.com/huggingface/diffusers/blob/31be42209ddfdb69d9640a777b32e9b5c6259bf0/examples/dreambooth/train_dreambooth_lora.py#L975) for an example on how you can change the scheduler of an already initialized `StableDiffusionPipeline`.
22
  """
23
 
24
 
 
27
  text_encoder_weights = None
28
  if unet_weights == "":
29
  unet_weights = None
30
+ print(f"unet_weights: {unet_weights}")
31
  pipeline = run_conversion(text_encoder_weights, unet_weights)
32
  output_path = "kerascv_sd_diffusers_pipeline"
33
  pipeline.save_pretrained(output_path)