Spaces:
Running
Running
| # DEPENDENCIES | |
| import re | |
| from typing import List | |
| from typing import Dict | |
| from typing import Tuple | |
| from loguru import logger | |
| from typing import Optional | |
| from dataclasses import dataclass | |
| from config.threshold_config import Domain | |
| from metrics.base_metric import MetricResult | |
| from detector.ensemble import EnsembleResult | |
| from detector.ensemble import EnsembleClassifier | |
| from processors.text_processor import TextProcessor | |
| from config.threshold_config import ConfidenceLevel | |
| from config.threshold_config import MetricThresholds | |
| from config.threshold_config import get_confidence_level | |
| from config.threshold_config import get_threshold_for_domain | |
| from config.threshold_config import get_active_metric_weights | |
| class HighlightedSentence: | |
| """ | |
| A sentence with highlighting information | |
| """ | |
| text : str | |
| ai_probability : float | |
| human_probability : float | |
| mixed_probability : float | |
| confidence : float | |
| confidence_level : ConfidenceLevel | |
| color_class : str | |
| tooltip : str | |
| index : int | |
| is_mixed_content : bool | |
| metric_breakdown : Optional[Dict[str, float]] = None | |
| class TextHighlighter: | |
| """ | |
| Generates sentence-level highlighting with ensemble results integration | |
| FEATURES: | |
| - Sentence-level highlighting with confidence scores | |
| - Domain-aware calibration | |
| - Ensemble-based probability aggregation | |
| - Mixed content detection | |
| - Explainable tooltips | |
| - Highlighting metrics calculation | |
| """ | |
| # Color thresholds with mixed content support - FIXED: No gaps | |
| COLOR_THRESHOLDS = [(0.00, 0.10, "very-high-human", "#dcfce7", "Very likely human-written"), | |
| (0.10, 0.25, "high-human", "#bbf7d0", "Likely human-written"), | |
| (0.25, 0.40, "medium-human", "#86efac", "Possibly human-written"), | |
| (0.40, 0.60, "uncertain", "#fef9c3", "Uncertain"), | |
| (0.60, 0.75, "medium-ai", "#fde68a", "Possibly AI-generated"), | |
| (0.75, 0.90, "high-ai", "#fed7aa", "Likely AI-generated"), | |
| (0.90, 1.00, "very-high-ai", "#fecaca", "Very likely AI-generated"), | |
| ] | |
| # Mixed content pattern | |
| MIXED_THRESHOLD = 0.25 | |
| # Risk weights | |
| RISK_WEIGHTS = {'very-high-ai' : 1.0, | |
| 'high-ai' : 0.8, | |
| 'medium-ai' : 0.6, | |
| 'uncertain' : 0.4, | |
| 'medium-human' : 0.2, | |
| 'high-human' : 0.1, | |
| 'very-high-human' : 0.0, | |
| 'mixed-content' : 0.7, | |
| } | |
| def __init__(self, domain: Domain = Domain.GENERAL, ensemble_classifier: Optional[EnsembleClassifier] = None): | |
| """ | |
| Initialize text highlighter with ENSEMBLE INTEGRATION | |
| Arguments: | |
| ---------- | |
| domain { Domain } : Text domain for adaptive thresholding | |
| ensemble_classifier { EnsembleClassifier } : Optional ensemble for sentence-level analysis | |
| """ | |
| self.text_processor = TextProcessor() | |
| self.domain = domain | |
| self.domain_thresholds = get_threshold_for_domain(domain) | |
| self.ensemble = ensemble_classifier or self._create_default_ensemble() | |
| def _create_default_ensemble(self) -> EnsembleClassifier: | |
| """ | |
| Create default ensemble classifier with proper error handling | |
| """ | |
| try: | |
| return EnsembleClassifier(primary_method = "confidence_calibrated", | |
| fallback_method = "domain_weighted", | |
| ) | |
| except Exception as e: | |
| logger.warning(f"Failed to create default ensemble: {e}. Using fallback mode.") | |
| # Return a minimal ensemble or raise based on requirements | |
| return EnsembleClassifier(primary_method = "weighted_average") | |
| def generate_highlights(self, text: str, metric_results: Dict[str, MetricResult], ensemble_result: Optional[EnsembleResult] = None, | |
| enabled_metrics: Optional[Dict[str, bool]] = None, use_sentence_level: bool = True) -> List[HighlightedSentence]: | |
| """ | |
| Generate sentence-level highlights with ensemble integration | |
| Arguments: | |
| ---------- | |
| text { str } : Original text | |
| metric_results { dict } : Results from all 6 metrics | |
| ensemble_result { EnsembleResult } : Optional document-level ensemble result | |
| enabled_metrics { dict } : Dict of metric_name -> is_enabled | |
| use_sentence_level { bool } : Whether to compute sentence-level probabilities | |
| Returns: | |
| -------- | |
| { list } : List of HighlightedSentence objects | |
| """ | |
| try: | |
| # Validate inputs | |
| if not text or not text.strip(): | |
| return self._handle_empty_text(text, metric_results, ensemble_result) | |
| # Get domain-appropriate weights for enabled metrics | |
| if enabled_metrics is None: | |
| enabled_metrics = {name: True for name in metric_results.keys()} | |
| weights = get_active_metric_weights(self.domain, enabled_metrics) | |
| # Split text into sentences with error handling | |
| sentences = self._split_sentences_with_fallback(text) | |
| if not sentences: | |
| return self._handle_no_sentences(text, metric_results, ensemble_result) | |
| # Calculate probabilities for each sentence using ENSEMBLE METHODS | |
| highlighted_sentences = list() | |
| for idx, sentence in enumerate(sentences): | |
| try: | |
| if use_sentence_level: | |
| # Use ENSEMBLE for sentence-level analysis | |
| ai_prob, human_prob, mixed_prob, confidence, breakdown = self._calculate_sentence_ensemble_probability(sentence = sentence, | |
| metric_results = metric_results, | |
| weights = weights, | |
| ensemble_result = ensemble_result, | |
| ) | |
| else: | |
| # Use document-level ensemble probabilities | |
| ai_prob, human_prob, mixed_prob, confidence, breakdown = self._get_document_ensemble_probability(ensemble_result = ensemble_result, | |
| metric_results = metric_results, | |
| weights = weights, | |
| ) | |
| # Apply domain-specific adjustments with limits | |
| ai_prob = self._apply_domain_specific_adjustments(sentence = sentence, | |
| ai_prob = ai_prob, | |
| sentence_length = len(sentence.split()), | |
| ) | |
| # Determine if this is mixed content | |
| is_mixed_content = (mixed_prob > self.MIXED_THRESHOLD) | |
| # Get confidence level | |
| confidence_level = get_confidence_level(confidence) | |
| # Get color class (consider mixed content) | |
| color_class, color_hex, tooltip_base = self._get_color_for_probability(probability = ai_prob, | |
| is_mixed_content = is_mixed_content, | |
| mixed_prob = mixed_prob, | |
| ) | |
| # Generate enhanced tooltip | |
| tooltip = self._generate_ensemble_tooltip(sentence = sentence, | |
| ai_prob = ai_prob, | |
| human_prob = human_prob, | |
| mixed_prob = mixed_prob, | |
| confidence = confidence, | |
| confidence_level = confidence_level, | |
| tooltip_base = tooltip_base, | |
| breakdown = breakdown, | |
| is_mixed_content = is_mixed_content, | |
| ) | |
| highlighted_sentences.append(HighlightedSentence(text = sentence, | |
| ai_probability = ai_prob, | |
| human_probability = human_prob, | |
| mixed_probability = mixed_prob, | |
| confidence = confidence, | |
| confidence_level = confidence_level, | |
| color_class = color_class, | |
| tooltip = tooltip, | |
| index = idx, | |
| is_mixed_content = is_mixed_content, | |
| metric_breakdown = breakdown, | |
| ) | |
| ) | |
| except Exception as e: | |
| logger.warning(f"Failed to process sentence {idx}: {e}") | |
| # Add fallback sentence | |
| highlighted_sentences.append(self._create_fallback_sentence(sentence, idx)) | |
| return highlighted_sentences | |
| except Exception as e: | |
| logger.error(f"Highlight generation failed: {e}") | |
| return self._create_error_fallback(text, metric_results) | |
| def _handle_empty_text(self, text: str, metric_results: Dict[str, MetricResult], ensemble_result: Optional[EnsembleResult]) -> List[HighlightedSentence]: | |
| """ | |
| Handle empty input text | |
| """ | |
| if ensemble_result: | |
| return [self._create_fallback_sentence(text = "No text content", | |
| index = 0, | |
| ai_prob = ensemble_result.ai_probability, | |
| human_prob = ensemble_result.human_probability, | |
| ) | |
| ] | |
| return [self._create_fallback_sentence("No text content", 0)] | |
| def _handle_no_sentences(self, text: str, metric_results: Dict[str, MetricResult], ensemble_result: Optional[EnsembleResult]) -> List[HighlightedSentence]: | |
| """ | |
| Handle case where no sentences could be extracted | |
| """ | |
| if (text and (len(text.strip()) > 0)): | |
| # Treat entire text as one sentence | |
| return [self._create_fallback_sentence(text.strip(), 0)] | |
| return [self._create_fallback_sentence("No processable content", 0)] | |
| def _create_fallback_sentence(self, text: str, index: int, ai_prob: float = 0.5, human_prob: float = 0.5) -> HighlightedSentence: | |
| """ | |
| Create a fallback sentence when processing fails | |
| """ | |
| confidence_level = get_confidence_level(0.3) | |
| color_class, _, tooltip_base = self._get_color_for_probability(probability = ai_prob, | |
| is_mixed_content = False, | |
| mixed_prob = 0.0, | |
| ) | |
| return HighlightedSentence(text = text, | |
| ai_probability = ai_prob, | |
| human_probability = human_prob, | |
| mixed_probability = 0.0, | |
| confidence = 0.3, | |
| confidence_level = confidence_level, | |
| color_class = color_class, | |
| tooltip = f"Fallback: {tooltip_base}\nProcessing failed for this sentence", | |
| index = index, | |
| is_mixed_content = False, | |
| metric_breakdown = {"fallback": ai_prob}, | |
| ) | |
| def _create_error_fallback(self, text: str, metric_results: Dict[str, MetricResult]) -> List[HighlightedSentence]: | |
| """ | |
| Create fallback when entire processing fails | |
| """ | |
| return [HighlightedSentence(text = text[:100] + "..." if len(text) > 100 else text, | |
| ai_probability = 0.5, | |
| human_probability = 0.5, | |
| mixed_probability = 0.0, | |
| confidence = 0.1, | |
| confidence_level = get_confidence_level(0.1), | |
| color_class = "uncertain", | |
| tooltip = "Error in text processing", | |
| index = 0, | |
| is_mixed_content = False, | |
| metric_breakdown = {"error": 0.5}, | |
| ) | |
| ] | |
| def _split_sentences_with_fallback(self, text: str) -> List[str]: | |
| """ | |
| Split text into sentences with comprehensive fallback handling | |
| """ | |
| try: | |
| sentences = self.text_processor.split_sentences(text) | |
| filtered_sentences = [s.strip() for s in sentences if len(s.strip()) >= 3] | |
| if filtered_sentences: | |
| return filtered_sentences | |
| # Fallback: split by common sentence endings | |
| fallback_sentences = re.split(r'[.!?]+', text) | |
| fallback_sentences = [s.strip() for s in fallback_sentences if len(s.strip()) >= 3] | |
| if fallback_sentences: | |
| return fallback_sentences | |
| # Ultimate fallback: treat as single sentence if meaningful | |
| if text.strip(): | |
| return [text.strip()] | |
| return [] | |
| except Exception as e: | |
| logger.warning(f"Sentence splitting failed, using fallback: {e}") | |
| # Return text as single sentence | |
| return [text] if text.strip() else [] | |
| def _calculate_sentence_ensemble_probability(self, sentence: str, metric_results: Dict[str, MetricResult], weights: Dict[str, float], | |
| ensemble_result: Optional[EnsembleResult] = None) -> Tuple[float, float, float, float, Dict[str, float]]: | |
| """ | |
| Calculate sentence probabilities using ensemble methods with domain calibration | |
| """ | |
| sentence_length = len(sentence.split()) | |
| # Handling short sentences - don't force neutral | |
| if (sentence_length < 3): | |
| # Return probabilities with lower confidence for very short sentences | |
| base_ai_prob = 0.5 | |
| # Low confidence for very short sentences | |
| base_confidence = 0.2 | |
| breakdown = {"short_sentence" : base_ai_prob} | |
| # Try to get some signal from available metrics | |
| for name, result in metric_results.items(): | |
| if ((result.error is None) and (weights.get(name, 0) > 0)): | |
| base_ai_prob = result.ai_probability | |
| breakdown[name] = base_ai_prob | |
| break | |
| return base_ai_prob, 1.0 - base_ai_prob, 0.0, base_confidence, breakdown | |
| # Calculate sentence-level metric results | |
| sentence_metric_results = dict() | |
| breakdown = dict() | |
| for name, doc_result in metric_results.items(): | |
| if doc_result.error is None: | |
| try: | |
| # Compute sentence-level probability for this metric | |
| sentence_prob = self._compute_sentence_metric(metric_name = name, | |
| sentence = sentence, | |
| result = doc_result, | |
| weight = weights.get(name, 0.0), | |
| ) | |
| # Create sentence-level MetricResult | |
| sentence_metric_results[name] = self._create_sentence_metric_result(metric_name = name, | |
| ai_prob = sentence_prob, | |
| doc_result = doc_result, | |
| sentence_length = sentence_length, | |
| ) | |
| breakdown[name] = sentence_prob | |
| except Exception as e: | |
| logger.warning(f"Metric {name} failed for sentence: {e}") | |
| # Use document probability as fallback | |
| breakdown[name] = doc_result.ai_probability | |
| # Use ensemble to combine sentence-level metrics | |
| if sentence_metric_results: | |
| try: | |
| ensemble_sentence_result = self.ensemble.predict(metric_results = sentence_metric_results, | |
| domain = self.domain, | |
| ) | |
| return (ensemble_sentence_result.ai_probability, | |
| ensemble_sentence_result.human_probability, | |
| ensemble_sentence_result.mixed_probability, | |
| ensemble_sentence_result.overall_confidence, | |
| breakdown) | |
| except Exception as e: | |
| logger.warning(f"Sentence ensemble failed: {e}") | |
| # Fallback: weighted average | |
| return self._calculate_weighted_probability(metric_results, weights, breakdown) | |
| def _compute_sentence_metric(self, metric_name: str, sentence: str, result: MetricResult, weight: float) -> float: | |
| """ | |
| Compute metric probability for a single sentence using domain-specific thresholds | |
| """ | |
| sentence_length = len(sentence.split()) | |
| # Get domain-specific threshold for this metric | |
| metric_thresholds = getattr(self.domain_thresholds, metric_name, None) | |
| if not metric_thresholds: | |
| return result.ai_probability | |
| # Base probability from document-level result | |
| base_prob = result.ai_probability | |
| # Apply domain-aware sentence-level adjustments | |
| adjusted_prob = self._apply_metric_specific_adjustments(metric_name = metric_name, | |
| sentence = sentence, | |
| base_prob = base_prob, | |
| sentence_length = sentence_length, | |
| thresholds = metric_thresholds, | |
| ) | |
| return adjusted_prob | |
| def _create_sentence_metric_result(self, metric_name: str, ai_prob: float, doc_result: MetricResult, sentence_length: int) -> MetricResult: | |
| """ | |
| Create sentence-level MetricResult from document-level result | |
| """ | |
| # IMPROVED: Calculate confidence based on sentence characteristics | |
| sentence_confidence = self._calculate_sentence_confidence(doc_result.confidence, sentence_length) | |
| return MetricResult(metric_name = metric_name, | |
| ai_probability = ai_prob, | |
| human_probability = 1.0 - ai_prob, | |
| mixed_probability = 0.0, | |
| confidence = sentence_confidence, | |
| details = doc_result.details, | |
| error = None, | |
| ) | |
| def _calculate_sentence_confidence(self, doc_confidence: float, sentence_length: int) -> float: | |
| """ | |
| IMPROVED: Calculate confidence for sentence-level analysis with length consideration | |
| """ | |
| base_reduction = 0.8 | |
| # Scale confidence penalty with sentence length | |
| length_penalty = max(0.3, min(1.0, sentence_length / 12.0)) # Normalize around 12 words | |
| return max(0.1, doc_confidence * base_reduction * length_penalty) | |
| def _calculate_weighted_probability(self, metric_results: Dict[str, MetricResult], weights: Dict[str, float], breakdown: Dict[str, float]) -> Tuple[float, float, float, float, Dict[str, float]]: | |
| """ | |
| Fallback weighted probability calculation | |
| """ | |
| weighted_ai_probs = list() | |
| weighted_human_probs = list() | |
| confidences = list() | |
| total_weight = 0.0 | |
| for name, result in metric_results.items(): | |
| if (result.error is None): | |
| weight = weights.get(name, 0.0) | |
| if (weight > 0): | |
| weighted_ai_probs.append(result.ai_probability * weight) | |
| weighted_human_probs.append(result.human_probability * weight) | |
| confidences.append(result.confidence) | |
| total_weight += weight | |
| if ((not weighted_ai_probs) or (total_weight == 0)): | |
| return 0.5, 0.5, 0.0, 0.5, breakdown or {} | |
| ai_prob = sum(weighted_ai_probs) / total_weight | |
| human_prob = sum(weighted_human_probs) / total_weight | |
| mixed_prob = 0.0 # Fallback | |
| avg_confidence = sum(confidences) / len(confidences) if confidences else 0.5 | |
| return ai_prob, human_prob, mixed_prob, avg_confidence, breakdown | |
| def _get_document_ensemble_probability(self, ensemble_result: Optional[EnsembleResult], metric_results: Dict[str, MetricResult], | |
| weights: Dict[str, float]) -> Tuple[float, float, float, float, Dict[str, float]]: | |
| """ | |
| Get document-level ensemble probability | |
| """ | |
| if ensemble_result: | |
| # Use existing ensemble result | |
| breakdown = {name: result.ai_probability for name, result in metric_results.items()} | |
| return (ensemble_result.ai_probability, ensemble_result.human_probability, ensemble_result.mixed_probability, | |
| ensemble_result.overall_confidence, breakdown) | |
| else: | |
| # Calculate from metrics | |
| return self._calculate_weighted_probability(metric_results, weights, {}) | |
| def _apply_domain_specific_adjustments(self, sentence: str, ai_prob: float, sentence_length: int) -> float: | |
| """ | |
| Apply domain-specific adjustments to AI probability with limits | |
| """ | |
| original_prob = ai_prob | |
| adjustments = list() | |
| sentence_lower = sentence.lower() | |
| # Technical & AI/ML domains | |
| if (self.domain in [Domain.AI_ML, Domain.SOFTWARE_DEV, Domain.TECHNICAL_DOC, Domain.ENGINEERING, Domain.SCIENCE]): | |
| if self._has_technical_terms(sentence_lower): | |
| adjustments.append(1.1) | |
| elif self._has_code_like_patterns(sentence): | |
| adjustments.append(1.15) | |
| elif (sentence_length > 35): | |
| adjustments.append(1.05) | |
| # Creative & informal domains | |
| elif (self.domain in [Domain.CREATIVE, Domain.SOCIAL_MEDIA, Domain.BLOG_PERSONAL]): | |
| if self._has_informal_language(sentence_lower): | |
| adjustments.append(0.7) | |
| elif self._has_emotional_language(sentence): | |
| adjustments.append(0.8) | |
| elif (sentence_length < 10): | |
| adjustments.append(0.8) | |
| # Academic & formal domains | |
| elif (self.domain in [Domain.ACADEMIC, Domain.LEGAL, Domain.MEDICAL]): | |
| if self._has_citation_patterns(sentence): | |
| adjustments.append(0.8) | |
| elif self._has_technical_terms(sentence_lower): | |
| adjustments.append(1.1) | |
| elif (sentence_length > 40): | |
| adjustments.append(1.1) | |
| # Business & professional domains | |
| elif (self.domain in [Domain.BUSINESS, Domain.MARKETING, Domain.JOURNALISM]): | |
| if self._has_business_jargon(sentence_lower): | |
| adjustments.append(1.05) | |
| elif self._has_ambiguous_phrasing(sentence_lower): | |
| adjustments.append(0.9) | |
| elif (15 <= sentence_length <= 25): | |
| adjustments.append(0.9) | |
| # Tutorial & educational domains | |
| elif (self.domain == Domain.TUTORIAL): | |
| if self._has_instructional_language(sentence_lower): | |
| adjustments.append(0.85) | |
| elif self._has_step_by_step_pattern(sentence): | |
| adjustments.append(0.8) | |
| elif self._has_examples(sentence): | |
| adjustments.append(0.9) | |
| # General domain - minimal adjustments | |
| elif (self.domain == Domain.GENERAL): | |
| if self._has_complex_structure(sentence): | |
| adjustments.append(0.9) | |
| elif self._has_repetition(sentence): | |
| adjustments.append(1.1) | |
| # Apply adjustments with limits - take strongest 2 adjustments maximum | |
| if adjustments: | |
| # Sort by impact (farthest from 1.0) | |
| adjustments.sort(key = lambda x: abs(x - 1.0), reverse = True) | |
| # Limit to 2 strongest | |
| strongest_adjustments = adjustments[:2] | |
| for adjustment in strongest_adjustments: | |
| ai_prob *= adjustment | |
| # Ensure probability stays within bounds and doesn't change too drastically : Maximum 30% change from original | |
| max_change = 0.3 | |
| bounded_prob = max(original_prob - max_change, min(original_prob + max_change, ai_prob)) | |
| return max(0.0, min(1.0, bounded_prob)) | |
| def _apply_metric_specific_adjustments(self, metric_name: str, sentence: str, base_prob: float, sentence_length: int, thresholds: MetricThresholds) -> float: | |
| """ | |
| Apply metric-specific adjustments | |
| """ | |
| # Use metrics from ensemble | |
| if (metric_name == "perplexity"): | |
| if (sentence_length < 8): | |
| return min(1.0, base_prob * 1.2) | |
| elif (sentence_length > 25): | |
| return max(0.0, base_prob * 0.8) | |
| elif (metric_name == "entropy"): | |
| words = sentence.split() | |
| if (len(words) > 3): | |
| unique_words = len(set(words)) | |
| diversity = unique_words / len(words) | |
| if (diversity < 0.6): | |
| return min(1.0, base_prob * 1.2) | |
| elif (diversity > 0.8): | |
| return max(0.0, base_prob * 0.8) | |
| elif (metric_name == "linguistic"): | |
| complexity_score = self._analyze_sentence_complexity(sentence) | |
| if (complexity_score < 0.3): | |
| return min(1.0, base_prob * 1.1) | |
| elif (complexity_score > 0.7): | |
| return max(0.0, base_prob * 0.9) | |
| elif (metric_name == "structural"): | |
| if ((sentence_length < 5) or (sentence_length > 40)): | |
| return max(0.0, base_prob * 0.8) | |
| elif (8 <= sentence_length <= 20): | |
| return min(1.0, base_prob * 1.1) | |
| elif (metric_name == "semantic_analysis"): | |
| if self._has_repetition(sentence): | |
| return min(1.0, base_prob * 1.2) | |
| elif (metric_name == "multi_perturbation_stability"): | |
| # MultiPerturbationStability adjustments for sentence level | |
| if (sentence_length > 15): | |
| return min(1.0, base_prob * 1.1) | |
| return base_prob | |
| def _get_color_for_probability(self, probability: float, is_mixed_content: bool = False, mixed_prob: float = 0.0) -> Tuple[str, str, str]: | |
| """ | |
| Get color class with mixed content support and no threshold gaps | |
| """ | |
| # Handle probability = 1.0 explicitly | |
| if (probability >= 1.0): | |
| return "very-high-ai", "#fecaca", "Very likely AI-generated (100%)" | |
| # Check mixed content first | |
| if (is_mixed_content and (mixed_prob > self.MIXED_THRESHOLD)): | |
| return "mixed-content", "#e9d5ff", f"Mixed AI/Human content ({mixed_prob:.1%} mixed)" | |
| # Iterate through thresholds correctly | |
| for min_thresh, max_thresh, color_class, color_hex, tooltip in self.COLOR_THRESHOLDS: | |
| if (min_thresh <= probability < max_thresh): | |
| return color_class, color_hex, tooltip | |
| # Fallback for probability = 1.0 (should be caught above, but just in case) | |
| return "very-high-ai", "#fecaca", "Very likely AI-generated" | |
| def _generate_ensemble_tooltip(self, sentence: str, ai_prob: float, human_prob: float, mixed_prob: float, confidence: float, confidence_level: ConfidenceLevel, | |
| tooltip_base: str, breakdown: Optional[Dict[str, float]] = None, is_mixed_content: bool = False) -> str: | |
| """ | |
| Generate enhanced tooltip with ENSEMBLE information | |
| """ | |
| tooltip = f"{tooltip_base}\n" | |
| if is_mixed_content: | |
| tooltip += "🔀 MIXED CONTENT DETECTED\n" | |
| tooltip += f"AI Probability: {ai_prob:.1%}\n" | |
| tooltip += f"Human Probability: {human_prob:.1%}\n" | |
| tooltip += f"Mixed Probability: {mixed_prob:.1%}\n" | |
| tooltip += f"Confidence: {confidence:.1%} ({confidence_level.value.replace('_', ' ').title()})\n" | |
| tooltip += f"Domain: {self.domain.value.replace('_', ' ').title()}\n" | |
| tooltip += f"Length: {len(sentence.split())} words" | |
| if breakdown: | |
| tooltip += "\n\nMetric Breakdown:" | |
| # Show top 4 metrics | |
| for metric, prob in list(breakdown.items())[:4]: | |
| tooltip += f"\n• {metric}: {prob:.1%}" | |
| tooltip += f"\n\nEnsemble Method: {getattr(self.ensemble, 'primary_method', 'fallback')}" | |
| return tooltip | |
| def _has_citation_patterns(self, sentence: str) -> bool: | |
| """ | |
| Check for academic citation patterns | |
| """ | |
| citation_indicators = ['et al.', 'ibid.', 'cf.', 'e.g.', 'i.e.', 'vol.', 'pp.', 'ed.', 'trans.', 'reference', 'cited', 'according to'] | |
| return any(indicator in sentence.lower() for indicator in citation_indicators) | |
| def _has_informal_language(self, sentence: str) -> bool: | |
| """ | |
| Check for informal language patterns | |
| """ | |
| informal_indicators = ['lol', 'omg', 'btw', 'imo', 'tbh', 'afaik', 'smh', '👋', '😂', '❤️', 'haha', 'wow', 'awesome'] | |
| return any(indicator in sentence.lower() for indicator in informal_indicators) | |
| def _has_technical_terms(self, sentence: str) -> bool: | |
| """ | |
| Check for domain-specific technical terms | |
| """ | |
| technical_indicators = ['hereinafter', 'whereas', 'aforementioned', 'diagnosis', 'prognosis', 'etiology', | |
| 'algorithm', 'neural network', 'machine learning', 'api', 'endpoint', 'database', | |
| 'quantum', 'thermodynamics', 'hypothesis', 'methodology'] | |
| return any(indicator in sentence.lower() for indicator in technical_indicators) | |
| def _has_ambiguous_phrasing(self, sentence: str) -> bool: | |
| """ | |
| Check for ambiguous phrasing that might indicate human writing | |
| """ | |
| ambiguous_indicators = ['perhaps', 'maybe', 'possibly', 'likely', 'appears to', 'seems to', 'might be', 'could be'] | |
| return any(indicator in sentence.lower() for indicator in ambiguous_indicators) | |
| def _has_complex_structure(self, sentence: str) -> bool: | |
| """ | |
| Check if sentence has complex linguistic structure | |
| """ | |
| words = sentence.split() | |
| if (len(words) < 8): | |
| return False | |
| complex_indicators = ['which', 'that', 'although', 'because', 'while', 'when', 'if', 'however', 'therefore'] | |
| return any(indicator in sentence.lower() for indicator in complex_indicators) | |
| def _has_emotional_language(self, sentence: str) -> bool: | |
| """ | |
| Check for emotional or subjective language | |
| """ | |
| emotional_indicators = ['feel', 'believe', 'think', 'wonder', 'hope', 'wish', 'love', 'hate', 'frustrating', 'exciting'] | |
| return any(indicator in sentence.lower() for indicator in emotional_indicators) | |
| def _has_business_jargon(self, sentence: str) -> bool: | |
| """ | |
| Check for business jargon | |
| """ | |
| jargon_indicators = ['synergy', 'leverage', 'bandwidth', 'circle back', 'touch base', 'value add', 'core competency'] | |
| return any(indicator in sentence.lower() for indicator in jargon_indicators) | |
| def _has_instructional_language(self, sentence: str) -> bool: | |
| """ | |
| Check for instructional language patterns | |
| """ | |
| instructional_indicators = ['step by step', 'firstly', 'secondly', 'finally', 'note that', 'remember to', 'make sure'] | |
| return any(indicator in sentence.lower() for indicator in instructional_indicators) | |
| def _has_step_by_step_pattern(self, sentence: str) -> bool: | |
| """ | |
| Check for step-by-step instructions | |
| """ | |
| step_patterns = ['step 1', 'step 2', 'step 3', 'step one', 'step two', 'first step', 'next step'] | |
| return any(pattern in sentence.lower() for pattern in step_patterns) | |
| def _has_examples(self, sentence: str) -> bool: | |
| """ | |
| Check for example indicators | |
| """ | |
| example_indicators = ['for example', 'for instance', 'such as', 'e.g.', 'as an example'] | |
| return any(indicator in sentence.lower() for indicator in example_indicators) | |
| def _has_code_like_patterns(self, sentence: str) -> bool: | |
| """ | |
| Check for code-like patterns in technical domains | |
| """ | |
| code_patterns = ['function', 'variable', 'class', 'method', 'import', 'def ', 'void ', 'public ', 'private '] | |
| return any(pattern in sentence for pattern in code_patterns) | |
| def _analyze_sentence_complexity(self, sentence: str) -> float: | |
| """ | |
| Analyze sentence complexity (0 = simple, 1 = complex) | |
| """ | |
| words = sentence.split() | |
| if (len(words) < 5): | |
| return 0.2 | |
| complexity_indicators = ['although', 'because', 'while', 'when', 'if', 'since', 'unless', 'until', 'which', 'that', 'who', 'whom', 'whose', 'and', 'but', 'or', 'yet', 'so', 'however', 'therefore', 'moreover', 'furthermore', 'nevertheless', ',', ';', ':', '—'] | |
| score = 0.0 | |
| if (len(words) > 15): | |
| score += 0.3 | |
| elif (len(words) > 25): | |
| score += 0.5 | |
| indicator_count = sum(1 for indicator in complexity_indicators if indicator in sentence.lower()) | |
| score += min(0.5, indicator_count * 0.1) | |
| clause_indicators = [',', ';', 'and', 'but', 'or', 'because', 'although'] | |
| clause_count = sum(1 for indicator in clause_indicators if indicator in sentence.lower()) | |
| score += min(0.2, clause_count * 0.05) | |
| return min(1.0, score) | |
| def _has_repetition(self, sentence: str) -> bool: | |
| """ | |
| Check if sentence has word repetition (common in AI text) | |
| """ | |
| words = sentence.lower().split() | |
| if (len(words) < 6): | |
| return False | |
| word_counts = dict() | |
| for word in words: | |
| if (len(word) > 3): | |
| word_counts[word] = word_counts.get(word, 0) + 1 | |
| repeated_words = [word for word, count in word_counts.items() if count > 2] | |
| return len(repeated_words) > 0 | |
| def _split_sentences(self, text: str) -> List[str]: | |
| """ | |
| Split the text chunk into multiple sentences | |
| """ | |
| sentences = self.text_processor.split_sentences(text) | |
| filtered_sentences = list() | |
| for sentence in sentences: | |
| clean_sentence = sentence.strip() | |
| if (len(clean_sentence) >= 3): | |
| filtered_sentences.append(clean_sentence) | |
| return filtered_sentences | |
| def generate_html(self, highlighted_sentences: List[HighlightedSentence], include_legend: bool = False, include_metrics: bool = True) -> str: | |
| """ | |
| Generate HTML with highlighted sentences | |
| Arguments: | |
| ---------- | |
| highlighted_sentences { List[HighlightedSentence] } : Sentences with highlighting data | |
| include_legend { bool } : Whether to include legend (set to False to avoid duplicates) | |
| include_metrics { bool } : Whether to include metrics summary | |
| Returns: | |
| -------- | |
| { str } : HTML content | |
| """ | |
| html_parts = list() | |
| # Add CSS | |
| html_parts.append(self._generate_enhanced_css()) | |
| # Only include legend if explicitly requested (usually False to avoid duplicates) | |
| if include_legend: | |
| html_parts.append(self._generate_legend_html()) | |
| # Add highlighted text container | |
| html_parts.append('<div class="highlighted-text">') | |
| for sent in highlighted_sentences: | |
| extra_class = " mixed-highlight" if sent.is_mixed_content else "" | |
| html_parts.append(f'<span class="highlight {sent.color_class}{extra_class}" ' | |
| f'data-ai-prob="{sent.ai_probability:.4f}" ' | |
| f'data-human-prob="{sent.human_probability:.4f}" ' | |
| f'data-mixed-prob="{sent.mixed_probability:.4f}" ' | |
| f'data-confidence="{sent.confidence:.4f}" ' | |
| f'data-confidence-level="{sent.confidence_level.value}" ' | |
| f'data-domain="{self.domain.value}" ' | |
| f'data-sentence-idx="{sent.index}" ' | |
| f'data-is-mixed="{str(sent.is_mixed_content).lower()}" ' | |
| f'title="{sent.tooltip}">' | |
| f'{sent.text}' | |
| f'</span> ' | |
| ) | |
| html_parts.append('</div>') | |
| # Add metrics summary if requested (separate from legend) | |
| if include_metrics and highlighted_sentences: | |
| html_parts.append(self._generate_metrics_summary(highlighted_sentences)) | |
| return '\n'.join(html_parts) | |
| def _generate_enhanced_css(self) -> str: | |
| """ | |
| Generate CSS for highlighting for Better readability | |
| """ | |
| return """ | |
| <style> | |
| .highlighted-text { | |
| line-height: 1.8; | |
| font-size: 16px; | |
| font-family: 'Georgia', serif; | |
| padding: 20px; | |
| background: #ffffff; | |
| border-radius: 8px; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
| margin-bottom: 20px; | |
| } | |
| .highlight { | |
| padding: 2px 4px; | |
| margin: 0 1px; | |
| border-radius: 3px; | |
| transition: all 0.2s ease; | |
| cursor: help; | |
| border-bottom: 2px solid transparent; | |
| color: #000000 !important; | |
| font-weight: 500; | |
| position: relative; | |
| } | |
| .highlight:hover { | |
| transform: translateY(-1px); | |
| box-shadow: 0 4px 12px rgba(0,0,0,0.15); | |
| z-index: 10; | |
| text-shadow: 0 1px 1px rgba(255,255,255,0.8); | |
| } | |
| /* AI indicators - Lighter backgrounds for better readability */ | |
| .very-high-ai { | |
| background-color: #fee2e2; | |
| border-bottom-color: #ef4444; | |
| } | |
| .high-ai { | |
| background-color: #fed7aa; | |
| border-bottom-color: #f97316; | |
| } | |
| .medium-ai { | |
| background-color: #fef3c7; | |
| border-bottom-color: #f59e0b; | |
| } | |
| /* Uncertain */ | |
| .uncertain { | |
| background-color: #fef9c3; | |
| border-bottom-color: #fbbf24; | |
| } | |
| /* Human indicators - Lighter backgrounds */ | |
| .medium-human { | |
| background-color: #ecfccb; | |
| border-bottom-color: #a3e635; | |
| } | |
| .high-human { | |
| background-color: #bbf7d0; | |
| border-bottom-color: #4ade80; | |
| } | |
| .very-high-human { | |
| background-color: #dcfce7; | |
| border-bottom-color: #22c55e; | |
| } | |
| /* Mixed content */ | |
| .mixed-content { | |
| background-color: #e9d5ff; | |
| border-bottom-color: #a855f7; | |
| background-image: repeating-linear-gradient(45deg, transparent, transparent 5px, rgba(168, 85, 247, 0.1) 5px, rgba(168, 85, 247, 0.1) 10px); | |
| } | |
| .mixed-highlight:hover { | |
| border: 2px dashed #a855f7; | |
| } | |
| /* Summary styles */ | |
| .highlight-summary { | |
| margin-bottom: 20px; | |
| padding: 15px; | |
| background: #f9fafb; | |
| border-radius: 8px; | |
| border: 1px solid #e5e7eb; | |
| } | |
| .highlight-summary h4 { | |
| margin: 0 0 10px 0; | |
| font-size: 14px; | |
| font-weight: 600; | |
| color: #374151; | |
| } | |
| .summary-stats { | |
| display: grid; | |
| grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); | |
| gap: 10px; | |
| } | |
| .stat-item { | |
| display: flex; | |
| justify-content: space-between; | |
| align-items: center; | |
| padding: 8px 12px; | |
| background: white; | |
| border-radius: 6px; | |
| border: 1px solid #e5e7eb; | |
| } | |
| .stat-label { | |
| font-size: 13px; | |
| color: #6b7280; | |
| } | |
| .stat-value { | |
| font-size: 13px; | |
| font-weight: 600; | |
| color: #374151; | |
| } | |
| </style> | |
| """ | |
| def _generate_metrics_summary(self, sentences: List[HighlightedSentence]) -> str: | |
| """ | |
| Generate summary statistics for highlighted sentences | |
| """ | |
| if not sentences: | |
| return "" | |
| # Calculate summary metrics | |
| total_sentences = len(sentences) | |
| # Count sentences by category | |
| very_high_ai = len([s for s in sentences if s.color_class == "very-high-ai"]) | |
| high_ai = len([s for s in sentences if s.color_class == "high-ai"]) | |
| medium_ai = len([s for s in sentences if s.color_class == "medium-ai"]) | |
| uncertain = len([s for s in sentences if s.color_class == "uncertain"]) | |
| medium_human = len([s for s in sentences if s.color_class == "medium-human"]) | |
| high_human = len([s for s in sentences if s.color_class == "high-human"]) | |
| very_high_human = len([s for s in sentences if s.color_class == "very-high-human"]) | |
| mixed = len([s for s in sentences if s.color_class == "mixed-content"]) | |
| # Calculate overall risk score (weighted average) | |
| weighted_risk = 0.0 | |
| for sent in sentences: | |
| weight = self.RISK_WEIGHTS.get(sent.color_class, 0.4) | |
| weighted_risk += sent.ai_probability * weight | |
| overall_risk_score = weighted_risk / total_sentences if total_sentences else 0.0 | |
| # Calculate average probabilities | |
| avg_ai_prob = sum(s.ai_probability for s in sentences) / total_sentences | |
| avg_human_prob = sum(s.human_probability for s in sentences) / total_sentences | |
| # Sentence counts | |
| ai_sentences = very_high_ai + high_ai + medium_ai | |
| human_sentences = very_high_human + high_human + medium_human | |
| html = f""" | |
| <div class="highlight-summary"> | |
| <h4>📊 Text Analysis Summary</h4> | |
| <div class="summary-stats"> | |
| <div class="stat-item"> | |
| <span class="stat-label">Overall Risk Score</span> | |
| <span class="stat-value">{overall_risk_score:.1%}</span> | |
| </div> | |
| <div class="stat-item"> | |
| <span class="stat-label">Average AI Probability</span> | |
| <span class="stat-value">{avg_ai_prob:.1%}</span> | |
| </div> | |
| <div class="stat-item"> | |
| <span class="stat-label">AI Sentences</span> | |
| <span class="stat-value">{ai_sentences} ({ai_sentences/total_sentences:.1%})</span> | |
| </div> | |
| <div class="stat-item"> | |
| <span class="stat-label">Human Sentences</span> | |
| <span class="stat-value">{human_sentences} ({human_sentences/total_sentences:.1%})</span> | |
| </div> | |
| <div class="stat-item"> | |
| <span class="stat-label">Uncertain Sentences</span> | |
| <span class="stat-value">{uncertain} ({uncertain/total_sentences:.1%})</span> | |
| </div> | |
| <div class="stat-item"> | |
| <span class="stat-label">Mixed Sentences</span> | |
| <span class="stat-value">{mixed} ({mixed/total_sentences:.1%})</span> | |
| </div> | |
| <div class="stat-item"> | |
| <span class="stat-label">Total Sentences</span> | |
| <span class="stat-value">{total_sentences}</span> | |
| </div> | |
| <div class="stat-item"> | |
| <span class="stat-label">Domain</span> | |
| <span class="stat-value">{self.domain.value.replace('_', ' ').title()}</span> | |
| </div> | |
| </div> | |
| </div> | |
| """ | |
| return html | |
| def _generate_legend_html(self) -> str: | |
| """ | |
| Generate legend HTML - Only used if explicitly requested | |
| """ | |
| return """ | |
| <div class="highlight-legend" style="margin-bottom: 20px; padding: 15px; background: #f8fafc; border-radius: 8px; border: 1px solid #e2e8f0;"> | |
| <h4 style="margin: 0 0 10px 0; font-size: 14px; font-weight: 600; color: #374151;">AI Detection Legend</h4> | |
| <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 8px;"> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #dcfce7; border: 1px solid #22c55e; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Very Likely Human (0-10%)</span> | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #bbf7d0; border: 1px solid #4ade80; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Likely Human (10-25%)</span> | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #86efac; border: 1px solid #16a34a; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Possibly Human (25-40%)</span> | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #fef9c3; border: 1px solid #fbbf24; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Uncertain (40-60%)</span> | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #fde68a; border: 1px solid #f59e0b; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Possibly AI (60-75%)</span> | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #fed7aa; border: 1px solid #f97316; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Likely AI (75-90%)</span> | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #fecaca; border: 1px solid #ef4444; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Very Likely AI (90-100%)</span> | |
| </div> | |
| <div style="display: flex; align-items: center; gap: 8px;"> | |
| <div style="width: 16px; height: 16px; background: #e9d5ff; border: 1px solid #a855f7; border-radius: 3px;"></div> | |
| <span style="font-size: 12px; color: #374151;">Mixed Content</span> | |
| </div> | |
| </div> | |
| </div> | |
| """ | |
| def calculate_metrics(self, highlighted_sentences: List[HighlightedSentence]) -> Dict[str, float]: | |
| """ | |
| Calculate metrics for external use | |
| Arguments: | |
| ---------- | |
| highlighted_sentences { List[HighlightedSentence] } : Sentences with highlighting data | |
| Returns: | |
| -------- | |
| { Dict[str, float] } : Dictionary with metrics | |
| """ | |
| if not highlighted_sentences: | |
| return {} | |
| total_sentences = len(highlighted_sentences) | |
| # Calculate weighted risk score | |
| weighted_risk = 0.0 | |
| for sent in highlighted_sentences: | |
| weight = self.RISK_WEIGHTS.get(sent.color_class, 0.4) | |
| weighted_risk += sent.ai_probability * weight | |
| overall_risk_score = weighted_risk / total_sentences | |
| # Count sentences by category | |
| ai_sentences = len([s for s in highlighted_sentences if s.ai_probability >= 0.6]) | |
| human_sentences = len([s for s in highlighted_sentences if s.ai_probability <= 0.4]) | |
| uncertain_sentences = len([s for s in highlighted_sentences if 0.4 < s.ai_probability < 0.6]) | |
| mixed_sentences = len([s for s in highlighted_sentences if s.is_mixed_content]) | |
| # Average probabilities | |
| avg_ai_prob = sum(s.ai_probability for s in highlighted_sentences) / total_sentences | |
| avg_human_prob = sum(s.human_probability for s in highlighted_sentences) / total_sentences | |
| avg_confidence = sum(s.confidence for s in highlighted_sentences) / total_sentences | |
| return {'overall_risk_score' : overall_risk_score, | |
| 'avg_ai_probability' : avg_ai_prob, | |
| 'avg_human_probability' : avg_human_prob, | |
| 'avg_confidence' : avg_confidence, | |
| 'ai_sentence_count' : ai_sentences, | |
| 'human_sentence_count' : human_sentences, | |
| 'uncertain_sentence_count' : uncertain_sentences, | |
| 'mixed_sentence_count' : mixed_sentences, | |
| 'total_sentences' : total_sentences, | |
| 'ai_sentence_percentage' : ai_sentences / total_sentences, | |
| 'human_sentence_percentage' : human_sentences / total_sentences, | |
| } | |
| # Export | |
| __all__ = ["TextHighlighter", | |
| "HighlightedSentence", | |
| ] |