satyaiyer's picture
Update app.py
87f4bdc verified
import pandas as pd
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
import os
import re
# Load the model and tokenizer
model_name = "google/flan-t5-base"
hf_token = os.environ.get("HF_TOKEN") # Set as a secret in Hugging Face Space settings
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, use_auth_token=hf_token)
# Move the model to CPU (or GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Function to generate a clean prompt
def generate_prompt(original, translation):
return (
f"Rate the quality of this translation from 0 (poor) to 1 (excellent). "
f"Only respond with a number.\n\n"
f"Source: {original}\n"
f"Translation: {translation}\n"
f"Score:"
)
# Main prediction function
def predict_scores(file):
df = pd.read_csv(file.name, sep="\t")
scores = []
for _, row in df.iterrows():
prompt = generate_prompt(row["original"], row["translation"])
# Tokenize and send to model
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=10)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Debug print (optional)
print("Response:", response)
# Extract numeric score using regex
match = re.search(r"\b([01](?:\.\d+)?)\b", response)
if match:
score_val = float(match.group(1))
score_val = max(0, min(score_val, 1)) # Clamp between 0 and 1
else:
score_val = -1 # fallback if model output is invalid
scores.append(score_val)
df["predicted_score"] = scores
return df
# Gradio UI
iface = gr.Interface(
fn=predict_scores,
inputs=gr.File(label="Upload dev.tsv"),
outputs=gr.Dataframe(label="QE Output with Predicted Score"),
title="MT QE with FLAN-T5-Base",
description="Upload a dev.tsv file with columns: 'original' and 'translation'."
)
# Launch app
iface.launch()