TransPose / app.py
satpalsr's picture
Test markdown
a153d03
# CODE WAS MODIFIED FROM https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
import torch
import cv2
import torchvision.transforms as transforms
import numpy as np
import math
import torchvision
import gradio as gr
from PIL import Image
import requests
COCO_KEYPOINT_INDEXES = {
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
}
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
def get_max_preds(batch_heatmaps):
'''
get predictions from score maps
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
'''
assert isinstance(batch_heatmaps, np.ndarray), \
'batch_heatmaps should be numpy.ndarray'
assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = batch_heatmaps.shape[0]
num_joints = batch_heatmaps.shape[1]
width = batch_heatmaps.shape[3]
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def get_dir(src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def get_3rd_point(a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_affine_transform(
center, scale, rot, output_size,
shift=np.array([0, 0], dtype=np.float32), inv=0
):
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
print(scale)
scale = np.array([scale, scale])
scale_tmp = scale * 200.0
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = get_dir([0, src_w * -0.5], rot_rad)
dst_dir = np.array([0, dst_w * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def transform_preds(coords, center, scale, output_size):
target_coords = np.zeros(coords.shape)
trans = get_affine_transform(center, scale, 0, output_size, inv=1)
for p in range(coords.shape[0]):
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
return target_coords
def taylor(hm, coord):
heatmap_height = hm.shape[0]
heatmap_width = hm.shape[1]
px = int(coord[0])
py = int(coord[1])
if 1 < px < heatmap_width-2 and 1 < py < heatmap_height-2:
dx = 0.5 * (hm[py][px+1] - hm[py][px-1])
dy = 0.5 * (hm[py+1][px] - hm[py-1][px])
dxx = 0.25 * (hm[py][px+2] - 2 * hm[py][px] + hm[py][px-2])
dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1]
+ hm[py-1][px-1])
dyy = 0.25 * (hm[py+2*1][px] - 2 * hm[py][px] + hm[py-2*1][px])
derivative = np.matrix([[dx], [dy]])
hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
if dxx * dyy - dxy ** 2 != 0:
hessianinv = hessian.I
offset = -hessianinv * derivative
offset = np.squeeze(np.array(offset.T), axis=0)
coord += offset
return coord
def gaussian_blur(hm, kernel):
border = (kernel - 1) // 2
batch_size = hm.shape[0]
num_joints = hm.shape[1]
height = hm.shape[2]
width = hm.shape[3]
for i in range(batch_size):
for j in range(num_joints):
origin_max = np.max(hm[i, j])
dr = np.zeros((height + 2 * border, width + 2 * border))
dr[border: -border, border: -border] = hm[i, j].copy()
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
hm[i, j] = dr[border: -border, border: -border].copy()
hm[i, j] *= origin_max / np.max(hm[i, j])
return hm
def get_final_preds(hm, center, scale, transform_back=True, test_blur_kernel=3):
coords, maxvals = get_max_preds(hm)
heatmap_height = hm.shape[2]
heatmap_width = hm.shape[3]
# post-processing
hm = gaussian_blur(hm, test_blur_kernel)
hm = np.maximum(hm, 1e-10)
hm = np.log(hm)
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
coords[n, p] = taylor(hm[n][p], coords[n][p])
preds = coords.copy()
if transform_back:
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(
coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
)
return preds, maxvals
SKELETON = [
[1, 3], [1, 0], [2, 4], [2, 0], [0, 5], [0, 6], [5, 7], [7, 9], [6, 8], [8, 10], [5, 11], [6, 12], [11, 12],
[11, 13], [13, 15], [12, 14], [14, 16]
]
CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
NUM_KPTS = 17
def get_person_detection_boxes(model, img, threshold=0.5):
pred = model(img)
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
for i in list(pred[0]['boxes'].detach().cpu().numpy())] # Bounding boxes
pred_score = list(pred[0]['scores'].detach().cpu().numpy())
if not pred_score or max(pred_score) < threshold:
return []
# Get list of index with score greater than threshold
pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1]
pred_boxes = pred_boxes[:pred_t + 1]
pred_classes = pred_classes[:pred_t + 1]
person_boxes = []
for idx, box in enumerate(pred_boxes):
if pred_classes[idx] == 'person':
person_boxes.append(box)
return person_boxes
def draw_pose(keypoints, img):
"""draw the keypoints and the skeletons.
:params keypoints: the shape should be equal to [17,2]
:params img:
"""
assert keypoints.shape == (NUM_KPTS, 2)
for i in range(len(SKELETON)):
kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1]
x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1]
x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1]
cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1)
cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1)
cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2)
def box_to_center_scale(box, model_image_width, model_image_height):
"""convert a box to center,scale information required for pose transformation
Parameters
----------
box : list of tuple
list of length 2 with two tuples of floats representing
bottom left and top right corner of a box
model_image_width : int
model_image_height : int
Returns
-------
(numpy array, numpy array)
Two numpy arrays, coordinates for the center of the box and the scale of the box
"""
center = np.zeros((2), dtype=np.float32)
bottom_left_corner = box[0]
top_right_corner = box[1]
box_width = top_right_corner[0] - bottom_left_corner[0]
box_height = top_right_corner[1] - bottom_left_corner[1]
bottom_left_x = bottom_left_corner[0]
bottom_left_y = bottom_left_corner[1]
center[0] = bottom_left_x + box_width * 0.5
center[1] = bottom_left_y + box_height * 0.5
aspect_ratio = model_image_width * 1.0 / model_image_height
pixel_std = 200
if box_width > aspect_ratio * box_height:
box_height = box_width * 1.0 / aspect_ratio
elif box_width < aspect_ratio * box_height:
box_width = box_height * aspect_ratio
scale = np.array(
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def get_pose_estimation_prediction(pose_model, image, center, scale):
rotation = 0
img_size = (256, 192)
# pose estimation transformation
trans = get_affine_transform(center, scale, rotation, img_size)
model_input = cv2.warpAffine(
image,
trans,
(int(img_size[0]), int(img_size[1])),
flags=cv2.INTER_LINEAR)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# pose estimation inference
model_input = transform(model_input).unsqueeze(0)
# switch to evaluate mode
pose_model.eval()
with torch.no_grad():
# compute output heatmap
output = pose_model(model_input)
preds, _ = get_final_preds(
output.clone().cpu().numpy(),
np.asarray([center]),
np.asarray([scale]))
return preds
def main(image_bgr, backbone_choice, box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)):
CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
box_model.to(CTX)
box_model.eval()
if backbone_choice == "ResNet":
backbone_choice = "tpr_a4_256x192"
else:
backbone_choice == "HRNet"
backbone_choice = "tph_a4_256x192"
model = torch.hub.load('yangsenius/TransPose:main', backbone_choice , pretrained=True)
img_dimensions = (256, 192)
input = []
image_rgb = image_bgr[:, :, [2, 1, 0]]
img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(img / 255.).permute(2, 0, 1).float().to(CTX)
input.append(img_tensor)
pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9)
if len(pred_boxes) >= 1:
for box in pred_boxes:
center, scale = box_to_center_scale(box, img_dimensions[0], img_dimensions[1])
image_pose = image_rgb.copy()
pose_preds = get_pose_estimation_prediction(model, image_pose, center, scale)
if len(pose_preds) >= 1:
for kpt in pose_preds:
draw_pose(kpt, image_bgr) # draw the poses
return image_bgr
title = "TransPose"
description = "Gradio demo for TransPose: Keypoint localization via Transformer. Dataset: COCO train2017 & COCO val2017. Default backbone selection = HRNet. [Integrated on paperswithcode.com](https://paperswithcode.com/paper/transpose-towards-explainable-human-pose)"
article = "<div style='text-align: center;'><a href='https://github.com/yangsenius/TransPose' target='_blank'>Full credits: github.com/yangsenius/TransPose</a></div>"
examples = [["./examples/one.jpg", "HRNet"], ["./examples/two.jpg", "HRNet"]]
iface = gr.Interface(main, inputs=[gr.inputs.Image(), gr.inputs.Radio(["HRNet", "ResNet"])], outputs="image", description=description, article=article, title=title, examples=examples)
iface.launch(enable_queue=True, debug='True')