satpalsr commited on
Commit
40809e0
1 Parent(s): b3c8ec7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -23
app.py CHANGED
@@ -2,27 +2,22 @@ from transformers import AutoFeatureExtractor, RegNetForImageClassification
2
  import torch
3
  import gradio as gr
4
 
5
- try:
6
- feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
7
- model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
8
-
9
- def inference(image):
10
- print("Type of image", type(image))
11
- inputs = feature_extractor(image, return_tensors="pt")
12
-
13
- with torch.no_grad():
14
- logits = model(**inputs).logits
15
-
16
- predicted_label = logits.argmax(-1).item()
17
- return model.config.id2label[predicted_label]
18
-
19
- title="RegNet-image-classification"
20
- description="This space uses RegNet Model with an image classification head on top (a linear layer on top of the pooled features). It predicts one of the 1000 ImageNet classes. Check [Docs](https://huggingface.co/docs/transformers/main/en/model_doc/regnet) for more details."
21
-
22
- examples=[['wolf.jpg'], ['ballon.jpg'], ['fountain.jpg']]
23
- iface = gr.Interface(inference, inputs=gr.inpu, outputs="text",title=title,description=description,examples=examples)
24
- iface.launch(enable_queue=True,cache_examples=True)
25
 
26
- except Exception as e:
27
- print("Oops got an error: Create an issue/PR at github.com/satpalsr/space-repo")
28
- print( "Error: %s" % str(e) )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import torch
3
  import gradio as gr
4
 
5
+ feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
6
+ model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ def inference(image):
9
+ print("Type of image", type(image))
10
+ inputs = feature_extractor(image, return_tensors="pt")
11
+
12
+ with torch.no_grad():
13
+ logits = model(**inputs).logits
14
+
15
+ predicted_label = logits.argmax(-1).item()
16
+ return model.config.id2label[predicted_label]
17
+
18
+ title="RegNet-image-classification"
19
+ description="This space uses RegNet Model with an image classification head on top (a linear layer on top of the pooled features). It predicts one of the 1000 ImageNet classes. Check [Docs](https://huggingface.co/docs/transformers/main/en/model_doc/regnet) for more details."
20
+
21
+ examples=[['wolf.jpg'], ['ballon.jpg'], ['fountain.jpg']]
22
+ iface = gr.Interface(inference, inputs=gr.inputs.Image(), outputs="text",title=title,description=description,examples=examples)
23
+ iface.launch(enable_queue=True)