Spaces:
Running
Running
Commit
·
2ef57a2
1
Parent(s):
3e43423
Big refactoring and extensive use of numpy
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from datasets import load_dataset, get_dataset_config_names
|
| 2 |
from functools import partial
|
| 3 |
from pandas import DataFrame
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
import tqdm
|
|
@@ -59,10 +60,74 @@ def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
|
| 59 |
state
|
| 60 |
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def get_images(batch_size, state):
|
| 63 |
-
|
| 64 |
-
metadatas = []
|
| 65 |
|
|
|
|
|
|
|
|
|
|
| 66 |
for i in tqdm.trange(batch_size, desc=f"Getting images"):
|
| 67 |
if DEBUG:
|
| 68 |
image = np.random.randint(0,255,(384,384,3))
|
|
@@ -73,40 +138,20 @@ def get_images(batch_size, state):
|
|
| 73 |
except StopIteration:
|
| 74 |
break
|
| 75 |
metadata = item["metadata"]
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
image[1] = data[i][1]
|
| 91 |
-
image[2] = (image[0]/(image[1]+0.1))*256
|
| 92 |
-
items.append(image.transpose(1,2,0))
|
| 93 |
-
|
| 94 |
-
if state["config"] == "default":
|
| 95 |
-
dataRGB = np.asarray(item["rgb"]).astype("uint8")
|
| 96 |
-
dataCHM = np.asarray(item["chm"]).astype("uint8")
|
| 97 |
-
data1m = np.asarray(item["1m"]).astype("uint8")
|
| 98 |
-
for i in range(dataRGB.shape[0]):
|
| 99 |
-
image = dataRGB[i,:,:,:]
|
| 100 |
-
items.append(image.transpose(1,2,0))
|
| 101 |
-
|
| 102 |
-
image = dataCHM[i,0,:,:]
|
| 103 |
-
items.append(image)
|
| 104 |
-
|
| 105 |
-
image = data1m[i,0,:,:]
|
| 106 |
-
items.append(image)
|
| 107 |
-
metadatas.append(metadata)
|
| 108 |
-
|
| 109 |
-
return items, DataFrame(metadatas)
|
| 110 |
|
| 111 |
def update_shape(rows, columns):
|
| 112 |
return gr.update(rows=rows, columns=columns)
|
|
@@ -114,53 +159,54 @@ def update_shape(rows, columns):
|
|
| 114 |
def new_state():
|
| 115 |
return gr.State({})
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
| 1 |
from datasets import load_dataset, get_dataset_config_names
|
| 2 |
from functools import partial
|
| 3 |
from pandas import DataFrame
|
| 4 |
+
from PIL import Image
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import tqdm
|
|
|
|
| 60 |
state
|
| 61 |
)
|
| 62 |
|
| 63 |
+
def item_to_images(config, item):
|
| 64 |
+
metadata = item["metadata"]
|
| 65 |
+
if type(metadata) == str:
|
| 66 |
+
metadata = json.loads(metadata)
|
| 67 |
+
|
| 68 |
+
item = {
|
| 69 |
+
k: np.asarray(v).astype("uint8")
|
| 70 |
+
for k,v in item.items()
|
| 71 |
+
if k != "metadata"
|
| 72 |
+
}
|
| 73 |
+
item["metadata"] = metadata
|
| 74 |
+
|
| 75 |
+
if config == "satellogic":
|
| 76 |
+
item["rgb"] = [
|
| 77 |
+
Image.fromarray(image.transpose(1,2,0))
|
| 78 |
+
for image in item["rgb"]
|
| 79 |
+
]
|
| 80 |
+
item["1m"] = [
|
| 81 |
+
Image.fromarray(image[0,:,:])
|
| 82 |
+
for image in item["1m"]
|
| 83 |
+
]
|
| 84 |
+
elif config == "sentinel_1":
|
| 85 |
+
# Mapping of V and H to RGB. May not be correct
|
| 86 |
+
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
|
| 87 |
+
i10m = item["10m"]
|
| 88 |
+
i10m = np.concatenate(
|
| 89 |
+
( i10m,
|
| 90 |
+
np.expand_dims(
|
| 91 |
+
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
|
| 92 |
+
1
|
| 93 |
+
).astype("uint8")
|
| 94 |
+
),
|
| 95 |
+
1
|
| 96 |
+
)
|
| 97 |
+
item["10m"] = [
|
| 98 |
+
Image.fromarray(image.transpose(1,2,0))
|
| 99 |
+
for image in i10m
|
| 100 |
+
]
|
| 101 |
+
elif config == "default":
|
| 102 |
+
item["rgb"] = [
|
| 103 |
+
Image.fromarray(image.transpose(1,2,0))
|
| 104 |
+
for image in item["rgb"]
|
| 105 |
+
]
|
| 106 |
+
item["chm"] = [
|
| 107 |
+
Image.fromarray(image[0])
|
| 108 |
+
for image in item["chm"]
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
|
| 112 |
+
# It just averages each 1/3 of the bads and assigns it to a channel
|
| 113 |
+
item["1m"] = [
|
| 114 |
+
Image.fromarray(
|
| 115 |
+
np.concatenate((
|
| 116 |
+
np.expand_dims(np.average(image[:124],0),2),
|
| 117 |
+
np.expand_dims(np.average(image[124:247],0),2),
|
| 118 |
+
np.expand_dims(np.average(image[247:],0),2))
|
| 119 |
+
,2).astype("uint8"))
|
| 120 |
+
for image in item["1m"]
|
| 121 |
+
]
|
| 122 |
+
return item
|
| 123 |
+
|
| 124 |
+
|
| 125 |
def get_images(batch_size, state):
|
| 126 |
+
config = state["config"]
|
|
|
|
| 127 |
|
| 128 |
+
images = []
|
| 129 |
+
metadatas = []
|
| 130 |
+
|
| 131 |
for i in tqdm.trange(batch_size, desc=f"Getting images"):
|
| 132 |
if DEBUG:
|
| 133 |
image = np.random.randint(0,255,(384,384,3))
|
|
|
|
| 138 |
except StopIteration:
|
| 139 |
break
|
| 140 |
metadata = item["metadata"]
|
| 141 |
+
item = item_to_images(config, item)
|
| 142 |
+
|
| 143 |
+
if config == "satellogic":
|
| 144 |
+
images.extend(item["rgb"])
|
| 145 |
+
images.extend(item["1m"])
|
| 146 |
+
if config == "sentinel_1":
|
| 147 |
+
images.extend(item["10m"])
|
| 148 |
+
if config == "default":
|
| 149 |
+
images.extend(item["rgb"])
|
| 150 |
+
images.extend(item["chm"])
|
| 151 |
+
images.extend(item["1m"])
|
| 152 |
+
metadatas.append(item["metadata"])
|
| 153 |
+
|
| 154 |
+
return images, DataFrame(metadatas)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
def update_shape(rows, columns):
|
| 157 |
return gr.update(rows=rows, columns=columns)
|
|
|
|
| 159 |
def new_state():
|
| 160 |
return gr.State({})
|
| 161 |
|
| 162 |
+
if __name__ == "__main__":
|
| 163 |
+
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
|
| 164 |
+
state = new_state()
|
| 165 |
+
|
| 166 |
+
gr.Markdown(f"# Viewer for [{DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
|
| 167 |
+
batch_size = gr.Number(10, label = "Batch Size", render=False)
|
| 168 |
+
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
|
| 169 |
+
table = gr.DataFrame(render = False)
|
| 170 |
+
# headers=["Index","TimeStamp","Bounds","CRS"],
|
| 171 |
+
|
| 172 |
+
gallery = gr.Gallery(
|
| 173 |
+
label=DATASET,
|
| 174 |
+
interactive=False,
|
| 175 |
+
columns=5, rows=2, render=False)
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
dataset = gr.Textbox(label="Dataset", value=DATASET, interactive=False)
|
| 179 |
+
config = gr.Dropdown(choices=sets.keys(), label="Config", value="satellogic", )
|
| 180 |
+
split = gr.Textbox(label="Split", value="train")
|
| 181 |
+
initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")
|
| 182 |
+
|
| 183 |
+
gr.Button("Load (minutes)").click(
|
| 184 |
+
open_dataset,
|
| 185 |
+
inputs=[dataset, config, split, batch_size, state, initial_shard],
|
| 186 |
+
outputs=[shard, gallery, table, state])
|
| 187 |
+
|
| 188 |
+
gallery.render()
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
batch_size.render()
|
| 192 |
+
|
| 193 |
+
rows = gr.Number(2, label="Rows")
|
| 194 |
+
columns = gr.Number(5, label="Coluns")
|
| 195 |
+
|
| 196 |
+
rows.change(update_shape, [rows, columns], [gallery])
|
| 197 |
+
columns.change(update_shape, [rows, columns], [gallery])
|
| 198 |
+
|
| 199 |
+
with gr.Row():
|
| 200 |
+
shard.render()
|
| 201 |
+
shard.release(
|
| 202 |
+
open_dataset,
|
| 203 |
+
inputs=[dataset, config, split, batch_size, state, shard],
|
| 204 |
+
outputs=[shard, gallery, table, state])
|
| 205 |
+
|
| 206 |
+
btn = gr.Button("Next Batch (same shard)", scale=0)
|
| 207 |
+
btn.click(get_images, [batch_size, state], [gallery, table])
|
| 208 |
+
btn.click()
|
| 209 |
+
|
| 210 |
+
table.render()
|
| 211 |
+
|
| 212 |
+
demo.launch(show_api=False)
|