Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import joblib | |
| import numpy as np | |
| # Load the trained model | |
| def load_model(): | |
| return joblib.load("superkart_prediction_model_v1_0.joblib") | |
| model = load_model() | |
| # Streamlit UI for Price Prediction | |
| st.title("superkart Prediction App") | |
| st.write("This tool predicts the sale details.") | |
| st.subheader("Enter the listing details:") | |
| # Collect user input | |
| product_type = st.selectbox("Product Type", ["Product_Type", "Snack Foods", "Meat","Dairy","Household","Baking Goods","Fruits and Vegetables","Canned"]) | |
| product_weight = st.number_input("Product Weight", min_value=10, value=10) | |
| Product_MRP = st.number_input("Product MRP", min_value=1, value=2) | |
| Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Product_Sugar_Content", "Low Sugar", "No Sugar","Regular"]) | |
| # Convert user input into a DataFrame | |
| input_data = pd.DataFrame([{ | |
| 'product_type': product_type, | |
| 'product_weight': product_weight, | |
| 'Product_MRP': Product_MRP, | |
| 'Product_Sugar_Content': Product_Sugar_Content | |
| }]) | |
| # Predict button | |
| if st.button("Predict"): | |
| prediction = model.predict(input_data) | |
| st.write(f"The predicted price of the sale is ${np.exp(prediction)[0]:.2f}.") | |