Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,83 @@
|
|
1 |
import os
|
2 |
-
import subprocess
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
import spacy
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
nltk.download('wordnet')
|
11 |
nltk.download('omw-1.4')
|
12 |
|
13 |
-
# Ensure the SpaCy model is installed
|
14 |
try:
|
15 |
nlp = spacy.load("en_core_web_sm")
|
16 |
except OSError:
|
17 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
18 |
nlp = spacy.load("en_core_web_sm")
|
19 |
|
20 |
-
#
|
21 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
22 |
-
|
23 |
-
def predict_en(text):
|
24 |
-
"""Function to predict the label and score for English text (AI Detection)"""
|
25 |
-
res = pipeline_en(text)[0]
|
26 |
-
return res['label'], res['score']
|
27 |
-
|
28 |
def get_synonyms_nltk(word, pos):
|
29 |
-
"""Function to get synonyms using NLTK WordNet"""
|
30 |
synsets = wordnet.synsets(word, pos=pos)
|
31 |
if synsets:
|
32 |
lemmas = synsets[0].lemmas()
|
33 |
return [lemma.name() for lemma in lemmas]
|
34 |
return []
|
35 |
|
36 |
-
|
37 |
-
|
38 |
doc = nlp(text)
|
39 |
-
|
|
|
40 |
|
41 |
for token in doc:
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if synonyms:
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
else:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
return ' '.join(rephrased_text)
|
52 |
|
|
|
|
|
|
|
53 |
def capitalize_sentences_and_nouns(text):
|
54 |
-
"""Function to capitalize the first letter of sentences and proper nouns"""
|
55 |
doc = nlp(text)
|
56 |
corrected_text = []
|
57 |
|
@@ -68,22 +94,42 @@ def capitalize_sentences_and_nouns(text):
|
|
68 |
|
69 |
return ' '.join(corrected_text)
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
doc = nlp(text)
|
74 |
corrected_text = []
|
75 |
for token in doc:
|
76 |
-
if token.
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
79 |
else:
|
80 |
corrected_text.append(token.text)
|
81 |
return ' '.join(corrected_text)
|
82 |
|
|
|
83 |
def correct_singular_plural_errors(text):
|
84 |
-
"""Function to correct singular/plural errors"""
|
85 |
doc = nlp(text)
|
86 |
corrected_text = []
|
|
|
87 |
for token in doc:
|
88 |
if token.pos_ == "NOUN":
|
89 |
if token.tag_ == "NN": # Singular noun
|
@@ -98,48 +144,39 @@ def correct_singular_plural_errors(text):
|
|
98 |
corrected_text.append(token.text)
|
99 |
else:
|
100 |
corrected_text.append(token.text)
|
|
|
101 |
return ' '.join(corrected_text)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
doc = nlp(text)
|
106 |
corrected_text = []
|
107 |
for token in doc:
|
108 |
-
if token.
|
109 |
-
|
110 |
-
|
111 |
-
corrected_text.append("an")
|
112 |
-
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
113 |
-
corrected_text.append("a")
|
114 |
-
else:
|
115 |
-
corrected_text.append(token.text)
|
116 |
else:
|
117 |
corrected_text.append(token.text)
|
118 |
return ' '.join(corrected_text)
|
119 |
|
120 |
-
|
121 |
-
"""Function to rephrase and correct grammar"""
|
122 |
-
rephrased_text = rephrase_text(text)
|
123 |
-
rephrased_text = capitalize_sentences_and_nouns(rephrased_text) # Capitalize first to ensure proper noun capitalization
|
124 |
-
rephrased_text = correct_article_errors(rephrased_text)
|
125 |
-
rephrased_text = correct_tense_errors(rephrased_text)
|
126 |
-
rephrased_text = correct_singular_plural_errors(rephrased_text)
|
127 |
-
return rephrased_text
|
128 |
-
|
129 |
-
# Define Gradio interface
|
130 |
with gr.Blocks() as demo:
|
131 |
-
with gr.
|
132 |
-
t1 = gr.Textbox(
|
133 |
-
button1 = gr.Button("
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
144 |
|
|
|
145 |
demo.launch()
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
+
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
|
9 |
+
# Initialize the English text classification pipeline for AI detection
|
10 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
11 |
+
|
12 |
+
# Function to predict the label and score for English text (AI Detection)
|
13 |
+
def predict_en(text):
|
14 |
+
res = pipeline_en(text)[0]
|
15 |
+
return res['label'], res['score']
|
16 |
+
|
17 |
+
# Ensure necessary NLTK data is downloaded for Humanifier
|
18 |
nltk.download('wordnet')
|
19 |
nltk.download('omw-1.4')
|
20 |
|
21 |
+
# Ensure the SpaCy model is installed for Humanifier
|
22 |
try:
|
23 |
nlp = spacy.load("en_core_web_sm")
|
24 |
except OSError:
|
25 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
26 |
nlp = spacy.load("en_core_web_sm")
|
27 |
|
28 |
+
# Function to get synonyms using NLTK WordNet (Humanifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def get_synonyms_nltk(word, pos):
|
|
|
30 |
synsets = wordnet.synsets(word, pos=pos)
|
31 |
if synsets:
|
32 |
lemmas = synsets[0].lemmas()
|
33 |
return [lemma.name() for lemma in lemmas]
|
34 |
return []
|
35 |
|
36 |
+
# Updated function to replace words with synonyms while preserving verb forms and pluralization
|
37 |
+
def replace_with_synonyms(text):
|
38 |
doc = nlp(text)
|
39 |
+
replaced_words = {}
|
40 |
+
corrected_text = []
|
41 |
|
42 |
for token in doc:
|
43 |
+
word = token.text
|
44 |
+
pos = token.pos_
|
45 |
+
|
46 |
+
# Get the WordNet POS tag format
|
47 |
+
if pos == "VERB":
|
48 |
+
wordnet_pos = wordnet.VERB
|
49 |
+
elif pos == "NOUN":
|
50 |
+
wordnet_pos = wordnet.NOUN
|
51 |
+
elif pos == "ADJ":
|
52 |
+
wordnet_pos = wordnet.ADJ
|
53 |
+
elif pos == "ADV":
|
54 |
+
wordnet_pos = wordnet.ADV
|
55 |
+
else:
|
56 |
+
corrected_text.append(word) # No change for other POS
|
57 |
+
continue
|
58 |
+
|
59 |
+
# Get synonyms for the word based on POS
|
60 |
+
if word in replaced_words:
|
61 |
+
synonym = replaced_words[word]
|
62 |
+
else:
|
63 |
+
synonyms = get_synonyms_nltk(word, wordnet_pos)
|
64 |
if synonyms:
|
65 |
+
synonym = synonyms[0] # Use the first synonym
|
66 |
+
# Ensure the synonym retains the same form (e.g., plural, verb form)
|
67 |
+
if pos == "VERB":
|
68 |
+
synonym = token.lemma_ if synonym == token.lemma_ else token._.inflect(token.tag_)
|
69 |
+
if pos == "NOUN" and token.tag_ == "NNS": # If plural noun, make sure synonym is plural
|
70 |
+
synonym += 's'
|
71 |
+
replaced_words[word] = synonym
|
72 |
else:
|
73 |
+
synonym = word # No synonym found, keep the word as is
|
74 |
+
|
75 |
+
corrected_text.append(synonym)
|
|
|
|
|
76 |
|
77 |
+
return ' '.join(corrected_text)
|
78 |
+
|
79 |
+
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
80 |
def capitalize_sentences_and_nouns(text):
|
|
|
81 |
doc = nlp(text)
|
82 |
corrected_text = []
|
83 |
|
|
|
94 |
|
95 |
return ' '.join(corrected_text)
|
96 |
|
97 |
+
# Function to paraphrase and correct grammar with stronger synonym usage
|
98 |
+
def paraphrase_and_correct(text):
|
99 |
+
paraphrased_text = capitalize_sentences_and_nouns(text) # Capitalize first to ensure proper noun capitalization
|
100 |
+
|
101 |
+
# Replace words with their synonyms
|
102 |
+
paraphrased_text = replace_with_synonyms(paraphrased_text)
|
103 |
+
|
104 |
+
# Apply grammatical corrections (can include other corrections from the original functions)
|
105 |
+
paraphrased_text = correct_article_errors(paraphrased_text)
|
106 |
+
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
107 |
+
paraphrased_text = correct_tense_errors(paraphrased_text)
|
108 |
+
|
109 |
+
return paraphrased_text
|
110 |
+
|
111 |
+
# Correct article errors
|
112 |
+
def correct_article_errors(text):
|
113 |
doc = nlp(text)
|
114 |
corrected_text = []
|
115 |
for token in doc:
|
116 |
+
if token.text in ['a', 'an']:
|
117 |
+
next_token = token.nbor(1)
|
118 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
119 |
+
corrected_text.append("an")
|
120 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
121 |
+
corrected_text.append("a")
|
122 |
+
else:
|
123 |
+
corrected_text.append(token.text)
|
124 |
else:
|
125 |
corrected_text.append(token.text)
|
126 |
return ' '.join(corrected_text)
|
127 |
|
128 |
+
# Correct singular/plural errors
|
129 |
def correct_singular_plural_errors(text):
|
|
|
130 |
doc = nlp(text)
|
131 |
corrected_text = []
|
132 |
+
|
133 |
for token in doc:
|
134 |
if token.pos_ == "NOUN":
|
135 |
if token.tag_ == "NN": # Singular noun
|
|
|
144 |
corrected_text.append(token.text)
|
145 |
else:
|
146 |
corrected_text.append(token.text)
|
147 |
+
|
148 |
return ' '.join(corrected_text)
|
149 |
|
150 |
+
# Correct tense errors in verbs
|
151 |
+
def correct_tense_errors(text):
|
152 |
doc = nlp(text)
|
153 |
corrected_text = []
|
154 |
for token in doc:
|
155 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
156 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
157 |
+
corrected_text.append(lemma)
|
|
|
|
|
|
|
|
|
|
|
158 |
else:
|
159 |
corrected_text.append(token.text)
|
160 |
return ' '.join(corrected_text)
|
161 |
|
162 |
+
# Gradio app setup with two tabs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
with gr.Blocks() as demo:
|
164 |
+
with gr.Tab("AI Detection"):
|
165 |
+
t1 = gr.Textbox(lines=5, label='Text')
|
166 |
+
button1 = gr.Button("🤖 Predict!")
|
167 |
+
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
168 |
+
score1 = gr.Textbox(lines=1, label='Prob')
|
169 |
+
|
170 |
+
# Connect the prediction function to the button
|
171 |
+
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
172 |
|
173 |
+
with gr.Tab("Humanifier"):
|
174 |
+
text_input = gr.Textbox(lines=5, label="Input Text")
|
175 |
+
paraphrase_button = gr.Button("Paraphrase & Correct")
|
176 |
+
output_text = gr.Textbox(label="Paraphrased Text")
|
177 |
+
|
178 |
+
# Connect the paraphrasing function to the button
|
179 |
+
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
180 |
|
181 |
+
# Launch the app with the remaining functionalities
|
182 |
demo.launch()
|