Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
from transformers import pipeline
|
| 4 |
import spacy
|
| 5 |
import subprocess
|
|
@@ -7,9 +7,6 @@ import nltk
|
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
| 9 |
|
| 10 |
-
# Initialize FastAPI app
|
| 11 |
-
app = FastAPI()
|
| 12 |
-
|
| 13 |
# Initialize the English text classification pipeline for AI detection
|
| 14 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 15 |
|
|
@@ -27,38 +24,152 @@ except OSError:
|
|
| 27 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 28 |
nlp = spacy.load("en_core_web_sm")
|
| 29 |
|
| 30 |
-
# Request body models
|
| 31 |
-
class TextRequest(BaseModel):
|
| 32 |
-
text: str
|
| 33 |
-
|
| 34 |
-
class TextResponse(BaseModel):
|
| 35 |
-
result: str
|
| 36 |
-
|
| 37 |
# Function to predict the label and score for English text (AI Detection)
|
| 38 |
-
def predict_en(text
|
| 39 |
res = pipeline_en(text)[0]
|
| 40 |
-
return
|
| 41 |
|
| 42 |
# Function to get synonyms using NLTK WordNet
|
| 43 |
-
def get_synonyms_nltk(word
|
| 44 |
-
|
| 45 |
-
if pos == "VERB":
|
| 46 |
-
pos_tag = wordnet.VERB
|
| 47 |
-
elif pos == "NOUN":
|
| 48 |
-
pos_tag = wordnet.NOUN
|
| 49 |
-
elif pos == "ADJ":
|
| 50 |
-
pos_tag = wordnet.ADJ
|
| 51 |
-
elif pos == "ADV":
|
| 52 |
-
pos_tag = wordnet.ADV
|
| 53 |
-
|
| 54 |
-
synsets = wordnet.synsets(word, pos=pos_tag)
|
| 55 |
if synsets:
|
| 56 |
lemmas = synsets[0].lemmas()
|
| 57 |
return [lemma.name() for lemma in lemmas]
|
| 58 |
return []
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
# Function to correct spelling errors
|
| 61 |
-
def correct_spelling(text
|
| 62 |
words = text.split()
|
| 63 |
corrected_words = []
|
| 64 |
for word in words:
|
|
@@ -67,20 +178,20 @@ def correct_spelling(text: str):
|
|
| 67 |
return ' '.join(corrected_words)
|
| 68 |
|
| 69 |
# Function to rephrase text and replace words with their synonyms while maintaining form
|
| 70 |
-
def rephrase_with_synonyms(text
|
| 71 |
doc = nlp(text)
|
| 72 |
rephrased_text = []
|
| 73 |
|
| 74 |
for token in doc:
|
| 75 |
pos_tag = None
|
| 76 |
if token.pos_ == "NOUN":
|
| 77 |
-
pos_tag =
|
| 78 |
elif token.pos_ == "VERB":
|
| 79 |
-
pos_tag =
|
| 80 |
elif token.pos_ == "ADJ":
|
| 81 |
-
pos_tag =
|
| 82 |
elif token.pos_ == "ADV":
|
| 83 |
-
pos_tag =
|
| 84 |
|
| 85 |
if pos_tag:
|
| 86 |
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
|
@@ -103,21 +214,49 @@ def rephrase_with_synonyms(text: str):
|
|
| 103 |
|
| 104 |
return ' '.join(rephrased_text)
|
| 105 |
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
return {"result": rephrase_with_synonyms(text_request.text)}
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
| 118 |
|
| 119 |
-
#
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
import uvicorn
|
| 123 |
-
uvicorn.run(app, host="127.0.0.1", port=8000)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
from transformers import pipeline
|
| 4 |
import spacy
|
| 5 |
import subprocess
|
|
|
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
# Initialize the English text classification pipeline for AI detection
|
| 11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 12 |
|
|
|
|
| 24 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 25 |
nlp = spacy.load("en_core_web_sm")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Function to predict the label and score for English text (AI Detection)
|
| 28 |
+
def predict_en(text):
|
| 29 |
res = pipeline_en(text)[0]
|
| 30 |
+
return res['label'], res['score']
|
| 31 |
|
| 32 |
# Function to get synonyms using NLTK WordNet
|
| 33 |
+
def get_synonyms_nltk(word, pos):
|
| 34 |
+
synsets = wordnet.synsets(word, pos=pos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
if synsets:
|
| 36 |
lemmas = synsets[0].lemmas()
|
| 37 |
return [lemma.name() for lemma in lemmas]
|
| 38 |
return []
|
| 39 |
|
| 40 |
+
# Function to remove redundant and meaningless words
|
| 41 |
+
def remove_redundant_words(text):
|
| 42 |
+
doc = nlp(text)
|
| 43 |
+
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 44 |
+
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 45 |
+
return ' '.join(filtered_text)
|
| 46 |
+
|
| 47 |
+
# Function to capitalize the first letter of sentences and proper nouns
|
| 48 |
+
def capitalize_sentences_and_nouns(text):
|
| 49 |
+
doc = nlp(text)
|
| 50 |
+
corrected_text = []
|
| 51 |
+
|
| 52 |
+
for sent in doc.sents:
|
| 53 |
+
sentence = []
|
| 54 |
+
for token in sent:
|
| 55 |
+
if token.i == sent.start: # First word of the sentence
|
| 56 |
+
sentence.append(token.text.capitalize())
|
| 57 |
+
elif token.pos_ == "PROPN": # Proper noun
|
| 58 |
+
sentence.append(token.text.capitalize())
|
| 59 |
+
else:
|
| 60 |
+
sentence.append(token.text)
|
| 61 |
+
corrected_text.append(' '.join(sentence))
|
| 62 |
+
|
| 63 |
+
return '\n'.join(corrected_text) # Preserve paragraphs by joining sentences with newline
|
| 64 |
+
|
| 65 |
+
# Function to force capitalization of the first letter of every sentence
|
| 66 |
+
def force_first_letter_capital(text):
|
| 67 |
+
sentences = text.split(". ") # Split by period to get each sentence
|
| 68 |
+
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
| 69 |
+
return ". ".join(capitalized_sentences)
|
| 70 |
+
|
| 71 |
+
# Function to correct tense errors in a sentence
|
| 72 |
+
def correct_tense_errors(text):
|
| 73 |
+
doc = nlp(text)
|
| 74 |
+
corrected_text = []
|
| 75 |
+
for token in doc:
|
| 76 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
| 77 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 78 |
+
corrected_text.append(lemma)
|
| 79 |
+
else:
|
| 80 |
+
corrected_text.append(token.text)
|
| 81 |
+
return ' '.join(corrected_text)
|
| 82 |
+
|
| 83 |
+
# Function to correct singular/plural errors
|
| 84 |
+
def correct_singular_plural_errors(text):
|
| 85 |
+
doc = nlp(text)
|
| 86 |
+
corrected_text = []
|
| 87 |
+
|
| 88 |
+
for token in doc:
|
| 89 |
+
if token.pos_ == "NOUN":
|
| 90 |
+
if token.tag_ == "NN": # Singular noun
|
| 91 |
+
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 92 |
+
corrected_text.append(token.lemma_ + 's')
|
| 93 |
+
else:
|
| 94 |
+
corrected_text.append(token.text)
|
| 95 |
+
elif token.tag_ == "NNS": # Plural noun
|
| 96 |
+
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 97 |
+
corrected_text.append(token.lemma_)
|
| 98 |
+
else:
|
| 99 |
+
corrected_text.append(token.text)
|
| 100 |
+
else:
|
| 101 |
+
corrected_text.append(token.text)
|
| 102 |
+
|
| 103 |
+
return ' '.join(corrected_text)
|
| 104 |
+
|
| 105 |
+
# Function to check and correct article errors
|
| 106 |
+
def correct_article_errors(text):
|
| 107 |
+
doc = nlp(text)
|
| 108 |
+
corrected_text = []
|
| 109 |
+
for token in doc:
|
| 110 |
+
if token.text in ['a', 'an']:
|
| 111 |
+
next_token = token.nbor(1)
|
| 112 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
| 113 |
+
corrected_text.append("an")
|
| 114 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 115 |
+
corrected_text.append("a")
|
| 116 |
+
else:
|
| 117 |
+
corrected_text.append(token.text)
|
| 118 |
+
else:
|
| 119 |
+
corrected_text.append(token.text)
|
| 120 |
+
return ' '.join(corrected_text)
|
| 121 |
+
|
| 122 |
+
# Function to get the correct synonym while maintaining verb form
|
| 123 |
+
def replace_with_synonym(token):
|
| 124 |
+
pos = None
|
| 125 |
+
if token.pos_ == "VERB":
|
| 126 |
+
pos = wordnet.VERB
|
| 127 |
+
elif token.pos_ == "NOUN":
|
| 128 |
+
pos = wordnet.NOUN
|
| 129 |
+
elif token.pos_ == "ADJ":
|
| 130 |
+
pos = wordnet.ADJ
|
| 131 |
+
elif token.pos_ == "ADV":
|
| 132 |
+
pos = wordnet.ADV
|
| 133 |
+
|
| 134 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 135 |
+
|
| 136 |
+
if synonyms:
|
| 137 |
+
synonym = synonyms[0]
|
| 138 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 139 |
+
synonym = synonym + 'ing'
|
| 140 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 141 |
+
synonym = synonym + 'ed'
|
| 142 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
| 143 |
+
synonym = synonym + 's'
|
| 144 |
+
return synonym
|
| 145 |
+
return token.text
|
| 146 |
+
|
| 147 |
+
# Function to check for and avoid double negatives
|
| 148 |
+
def correct_double_negatives(text):
|
| 149 |
+
doc = nlp(text)
|
| 150 |
+
corrected_text = []
|
| 151 |
+
for token in doc:
|
| 152 |
+
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
|
| 153 |
+
corrected_text.append("always")
|
| 154 |
+
else:
|
| 155 |
+
corrected_text.append(token.text)
|
| 156 |
+
return ' '.join(corrected_text)
|
| 157 |
+
|
| 158 |
+
# Function to ensure subject-verb agreement
|
| 159 |
+
def ensure_subject_verb_agreement(text):
|
| 160 |
+
doc = nlp(text)
|
| 161 |
+
corrected_text = []
|
| 162 |
+
for token in doc:
|
| 163 |
+
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
| 164 |
+
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
| 165 |
+
corrected_text.append(token.head.lemma_ + "s")
|
| 166 |
+
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
| 167 |
+
corrected_text.append(token.head.lemma_)
|
| 168 |
+
corrected_text.append(token.text)
|
| 169 |
+
return ' '.join(corrected_text)
|
| 170 |
+
|
| 171 |
# Function to correct spelling errors
|
| 172 |
+
def correct_spelling(text):
|
| 173 |
words = text.split()
|
| 174 |
corrected_words = []
|
| 175 |
for word in words:
|
|
|
|
| 178 |
return ' '.join(corrected_words)
|
| 179 |
|
| 180 |
# Function to rephrase text and replace words with their synonyms while maintaining form
|
| 181 |
+
def rephrase_with_synonyms(text):
|
| 182 |
doc = nlp(text)
|
| 183 |
rephrased_text = []
|
| 184 |
|
| 185 |
for token in doc:
|
| 186 |
pos_tag = None
|
| 187 |
if token.pos_ == "NOUN":
|
| 188 |
+
pos_tag = wordnet.NOUN
|
| 189 |
elif token.pos_ == "VERB":
|
| 190 |
+
pos_tag = wordnet.VERB
|
| 191 |
elif token.pos_ == "ADJ":
|
| 192 |
+
pos_tag = wordnet.ADJ
|
| 193 |
elif token.pos_ == "ADV":
|
| 194 |
+
pos_tag = wordnet.ADV
|
| 195 |
|
| 196 |
if pos_tag:
|
| 197 |
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
|
|
|
| 214 |
|
| 215 |
return ' '.join(rephrased_text)
|
| 216 |
|
| 217 |
+
# Function to paraphrase and correct grammar with enhanced accuracy
|
| 218 |
+
def paraphrase_and_correct(text):
|
| 219 |
+
# Remove meaningless or redundant words first
|
| 220 |
+
cleaned_text = remove_redundant_words(text)
|
| 221 |
+
|
| 222 |
+
# Capitalize sentences and nouns
|
| 223 |
+
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
| 224 |
+
|
| 225 |
+
# Ensure first letter of each sentence is capitalized
|
| 226 |
+
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
| 227 |
+
|
| 228 |
+
# Apply grammatical corrections
|
| 229 |
+
paraphrased_text = correct_article_errors(paraphrased_text)
|
| 230 |
+
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
| 231 |
+
paraphrased_text = correct_tense_errors(paraphrased_text)
|
| 232 |
+
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 233 |
+
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 234 |
+
|
| 235 |
+
# Rephrase with synonyms while maintaining grammatical forms
|
| 236 |
+
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 237 |
+
|
| 238 |
+
# Correct spelling errors
|
| 239 |
+
paraphrased_text = correct_spelling(paraphrased_text)
|
| 240 |
+
|
| 241 |
+
return paraphrased_text
|
| 242 |
+
|
| 243 |
+
# Gradio app setup with two tabs
|
| 244 |
+
with gr.Blocks() as demo:
|
| 245 |
+
with gr.Tab("AI Detection"):
|
| 246 |
+
t1 = gr.Textbox(lines=5, label='Text')
|
| 247 |
+
button1 = gr.Button("🤖 Predict!")
|
| 248 |
+
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
| 249 |
+
score1 = gr.Textbox(lines=1, label='Prob')
|
| 250 |
|
| 251 |
+
# Connect the prediction function to the button
|
| 252 |
+
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
|
|
|
| 253 |
|
| 254 |
+
with gr.Tab("Paraphrasing & Grammar Correction"):
|
| 255 |
+
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
|
| 256 |
+
button2 = gr.Button("🔄 Paraphrase and Correct")
|
| 257 |
+
result2 = gr.Textbox(lines=10, label='Corrected Text', placeholder="The corrected text will appear here...")
|
| 258 |
|
| 259 |
+
# Connect the paraphrasing and correction function to the button
|
| 260 |
+
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
| 261 |
|
| 262 |
+
demo.launch(share=True) # Share=True to create a public link
|
|
|
|
|
|