Spaces:
Runtime error
Runtime error
| """ | |
| Credit to Derek Thomas, derek@huggingface.co | |
| """ | |
| import subprocess | |
| subprocess.run(["pip", "install", "--upgrade", "transformers[torch,sentencepiece]==4.34.1"]) | |
| import logging | |
| from pathlib import Path | |
| from time import perf_counter | |
| import gradio as gr | |
| from jinja2 import Environment, FileSystemLoader | |
| from backend.query_llm import generate_hf, generate_openai | |
| from backend.semantic_search import tables, retrievers, cross_model | |
| VECTOR_COLUMN_NAME = "embeddings" | |
| TEXT_COLUMN_NAME = "text" | |
| proj_dir = Path(__file__).parent | |
| # Setting up the logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Set up the template environment with the templates directory | |
| env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
| # Load the templates directly from the environment | |
| template = env.get_template('template.j2') | |
| template_html = env.get_template('template_html.j2') | |
| # Examples | |
| examples = ['What is the capital of China?', | |
| 'Why is the sky blue?', | |
| 'Who won the mens world cup in 2014?', ] | |
| def add_text(history, text): | |
| history = [] if history is None else history | |
| history = history + [(text, None)] | |
| return history, gr.Textbox(value="", interactive=False) | |
| def bot(history, api_kind, use_cross_model, model_name, chunking, data): | |
| top_k_rank = 10 | |
| top_k_return = 4 | |
| num_documents = top_k_rank if use_cross_model == 'Yes' else top_k_return | |
| query = history[-1][0] | |
| if not query: | |
| gr.Warning("Please submit a non-empty string as a prompt") | |
| raise ValueError("Empty string was submitted") | |
| logger.warning('Retrieving documents...') | |
| # Retrieve documents relevant to query | |
| document_start = perf_counter() | |
| table_name = f"{model_name}_{chunking}_extended" if data == "All" else f"{model_name}_{chunking}" | |
| table = tables[table_name] | |
| retriever = retrievers[model_name] | |
| query_vec = retriever.encode(query) | |
| documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(num_documents).to_list() | |
| documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
| if use_cross_model == 'Yes': | |
| cross_model_inputs = [[query, passage] for passage in documents] | |
| scores = cross_model.predict(cross_model_inputs) | |
| results = [{'input': inp, 'score': score} for inp, score in zip(cross_model_inputs, scores)] | |
| results = sorted(results, key=lambda x: x['score'], reverse=True) | |
| documents_final = [x['input'][1] for x in results] | |
| documents = documents_final[:top_k_return] | |
| document_time = perf_counter() - document_start | |
| logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') | |
| # Create Prompt | |
| prompt = template.render(documents=documents, query=query) | |
| prompt_html = template_html.render(documents=documents, query=query) | |
| if api_kind == "Mistral-7B-Instruct": | |
| generate_fn = generate_hf | |
| elif api_kind == "gpt-3.5": | |
| generate_fn = lambda *args, **kwargs: generate_openai(*args, **kwargs, model="gpt-3.5-turbo-1106") | |
| elif api_kind == "gpt-4": | |
| generate_fn = lambda *args, **kwargs: generate_openai(*args, **kwargs, model="gpt-4-1106-preview") | |
| elif api_kind is None: | |
| gr.Warning("API name was not provided") | |
| raise ValueError("API name was not provided") | |
| else: | |
| gr.Warning(f"API {api_kind} is not supported") | |
| raise ValueError(f"API {api_kind} is not supported") | |
| history[-1][1] = "" | |
| for character in generate_fn(prompt, history[:-1]): | |
| history[-1][1] = character | |
| yield history, prompt_html | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot( | |
| [], | |
| elem_id="chatbot", | |
| avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
| 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
| bubble_full_width=False, | |
| show_copy_button=True, | |
| show_share_button=True, | |
| ) | |
| with gr.Row(): | |
| txt = gr.Textbox( | |
| scale=3, | |
| show_label=False, | |
| placeholder="Enter text and press enter", | |
| container=False, | |
| ) | |
| txt_btn = gr.Button(value="Submit text", scale=1) | |
| api_kind = gr.Radio( | |
| label="API", | |
| choices=["Mistral-7B-Instruct", | |
| "gpt-3.5", | |
| "gpt-4"], | |
| value="Mistral-7B-Instruct") | |
| use_cross_model = gr.Radio(label="Re-ranking", choices=["Yes", "No"], value="Yes") | |
| model_names = list(retrievers.keys()) | |
| model_name = gr.Radio(label="Retriever model", choices=model_names, value=model_names[0]) | |
| chunking = gr.Radio(label="Chunking strategy", choices=["Heading", "Lines"], value="Heading") | |
| data = gr.Radio(label="Use documents", choices=["Transformers", "All"], value="Transformers") | |
| prompt_html = gr.HTML() | |
| # Turn off interactivity while generating if you click | |
| txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| bot, [chatbot, api_kind, use_cross_model, model_name, chunking, data], [chatbot, prompt_html]) | |
| # Turn it back on | |
| txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
| # Turn off interactivity while generating if you hit enter | |
| txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| bot, [chatbot, api_kind, use_cross_model, model_name, chunking, data], [chatbot, prompt_html]) | |
| # Turn it back on | |
| txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
| # Examples | |
| gr.Examples(examples, txt) | |
| demo.queue() | |
| demo.launch(debug=True) | |