Sasha
Initial version of the Evaluation Buddy -- currently most things are hardcoded (e.g. the dataset list), but the goal it to make it all compatible with the Hub!
1f09890
raw
history blame
5.69 kB
import streamlit as st
from datasets import load_dataset_builder
from datasets import get_dataset_config_names
from os import listdir
from datasets import load_dataset, Dataset
from datasets_sql import query
import plotly.express as px
import numpy as np
import statistics
st.set_page_config(
page_title="Evaluation Buddy",
page_icon="./robot.png",
layout="wide",
)
st.title("Hugging Face Evaluation Buddy")
top_datasets= ['glue', 'super_glue', 'wikitext', 'imdb', 'squad', 'squad_es', \
'paws', 'librispeech_asr', 'wmt16', 'xnli', 'snli', 'ag_news', \
'anli', 'amazon_polarity', 'squad_v2', 'conll2003', 'red_caps', \
'common_voice', 'stsb_multi_mt', 'trec', 'tweet_eval', 'cosmos_qa',\
'sick', 'xsum', 'wikiann', 'yelp_polarity', 'hellaswag', 'piqa', \
'race', 'winogrande']
tasks= ['text-classification', 'question-answering-extractive', 'automatic-speech-recognition']
with st.sidebar.expander("Datasets", expanded=True):
dataset_name = st.selectbox(
f"Choose a dataset to evaluate on:",
sorted(top_datasets))
configs = get_dataset_config_names(dataset_name)
dataset_config = st.selectbox(
f"Choose a configuration of your dataset:",
configs)
dataset_builder = load_dataset_builder(dataset_name, dataset_config)
splits = [s for s in dataset_builder.info.splits]
dataset_split = st.selectbox(
f"Choose a dataset split:",
splits)
balanced_stdev = st.slider("Choose a standard deviation threshold for determining whether a dataset is balanced or not:", 0.00, 1.00, 0.20)
st.markdown("## Here is some information about your dataset:")
st.markdown("### Description")
st.markdown(dataset_builder.info.description)
st.markdown("For more information about this dataset, check out [its website](https://huggingface.co/datasets/"+dataset_name+")")
st.markdown("### Dataset-Specific Metrics")
if dataset_name in listdir('../datasets/metrics/'):
st.markdown("Great news! Your dataset has a dedicated metric for it! You can use it like this:")
code = ''' from datasets import load_metric
metric = load_metric('''+dataset+''', '''+config+''')'''
st.code(code, language='python')
dedicated_metric = True
else:
st.markdown("Your dataset doesn't have a dedicated metric, but that's ok!")
dedicated_metric = False
st.markdown("### Task-Specific Metrics")
try:
task = dataset_builder.info.task_templates[0].task
st.markdown("The task associated to it is: " + task)
if task == 'automatic-speech-recognition':
st.markdown('Automatic Speech Recognition has some dedicated metrics such as:')
st.markdown('[Word Error Rate](https://huggingface.co/metrics/wer)')
st.markdown('[Character Error Rate](https://huggingface.co/metrics/cer)')
else:
st.markdown("The task for your dataset doesn't have any dedicated metrics, but you can still use general ones!")
except:
st.markdown("The task for your dataset doesn't have any dedicated metrics, but you can still use general ones!")
#print(dataset_builder.info.task_templates)
#print(dataset_builder.info.features)
#st.markdown("### General Metrics")
#dataset = load_dataset(dataset_name, dataset_config, dataset_split)
#print(dataset_name, dataset_config, dataset_split)
#print(labels.head())
try:
num_classes = dataset_builder.info.features['label'].num_classes
dataset = load_dataset(dataset_name, split=dataset_split)
labels = query("SELECT COUNT(*) from dataset GROUP BY label").to_pandas()
labels = labels.rename(columns={"count_star()": "count"})
labels.index = dataset_builder.info.features['label'].names
st.markdown("### Labelled Metrics")
st.markdown("Your dataset has "+ str(dataset_builder.info.features['label'].num_classes) + " labels : " + ', '.join(dataset_builder.info.features['label'].names))
#TODO : figure out how to make a label plot
st.plotly_chart(px.pie(labels, values = "count", names = labels.index, width=800, height=400))
total = sum(c for c in labels['count'])
proportion = [c/total for c in labels['count']]
#proportion = [0.85, 0.15]
stdev_dataset= statistics.stdev(proportion)
if stdev_dataset <= balanced_stdev:
st.markdown("Since your dataset is well-balanced, you can look at using:")
st.markdown('[Accuracy](https://huggingface.co/metrics/accuracy)')
accuracy_code = '''from datasets import load_metric
metric = load_metric("accuracy")'''
st.code(accuracy_code, language='python')
else:
st.markdown("Since your dataset is not well-balanced, you can look at using:")
st.markdown('[F1 Score](https://huggingface.co/metrics/f1)')
accuracy_code = '''from datasets import load_metric
metric = load_metric("accuracy")'''
st.code(accuracy_code, language='python')
st.markdown('Since it takes into account both precision and recall, which works well to evaluate model performance on minority classes.')
except:
st.markdown("### Unsupervised Metrics")
st.markdown("Since dataset doesn't have any labels, so the metrics that you can use for evaluation are:")
st.markdown('[Perplexity](https://huggingface.co/metrics/perplexity)')
perplexity_code = '''from datasets import load_metric
metric = load_metric("perplexity")'''
st.code(perplexity_code, language='python')
st.markdown('If you choose a model that was trained on **' + dataset_name + '** and use it to compute perplexity on text generated by your model, this can help determine how similar the two are.')