sasha HF staff commited on
Commit
ebb696e
1 Parent(s): c4f8c1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -17
app.py CHANGED
@@ -74,6 +74,7 @@ def load_models(mod_names):
74
  continue
75
  return(model_list)
76
 
 
77
  @st.cache
78
  def load_pipes(mod_list):
79
  pipe_list=[]
@@ -87,31 +88,19 @@ load_pipes(load_models(models))
87
  ### Defining metrics
88
  for i in range (len(metrics)):
89
  globals()[f"metrics[i]"] = evaluate.load(metrics[i])
90
-
91
-
92
-
93
-
94
- ### Defining pipelines
95
 
96
  st.markdown("### Help us pick the right labels for your models")
97
 
98
  st.text("The labels for your dataset are: "+ str(data.features['label'].names))
99
 
100
- _ = """
101
- for i in range (len(model_list)):
102
- st.text("The labels for your dataset are: "+ str(data.features['label'].names))
103
- print(model_list[i])
104
- print(AutoConfig.from_pretrained(models[0]).id2label)
105
 
106
- for i in range (len(models)):
107
- try:
108
- globals()[f"pipe1_{i}"] = AutoTokenizer.from_pretrained(models[i])
109
- globals()[f"model_{i}"] = AutoModelForSequenceClassification.from_pretrained(models[i])
110
- st.text("Loaded model "+ str(models[i]))
111
- except:
112
- st.text("Sorry, I can't load model "+ str(models[i]))
113
 
114
 
 
115
  res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy,
116
  label_mapping={"NEGATIVE": 0, "POSITIVE": 1},)
117
  res_f11 = eval.compute(model_or_pipeline=pipe1, data=data, metric=f1,
 
74
  continue
75
  return(model_list)
76
 
77
+ ### Defining pipelines
78
  @st.cache
79
  def load_pipes(mod_list):
80
  pipe_list=[]
 
88
  ### Defining metrics
89
  for i in range (len(metrics)):
90
  globals()[f"metrics[i]"] = evaluate.load(metrics[i])
91
+
92
+ ## Label mapping
 
 
 
93
 
94
  st.markdown("### Help us pick the right labels for your models")
95
 
96
  st.text("The labels for your dataset are: "+ str(data.features['label'].names))
97
 
 
 
 
 
 
98
 
99
+ for i in range (len(model_list)):
100
+ st.text("The labels for " + str(model_list[i]) + "are: "+ str(AutoConfig.from_pretrained(model_list[i]).id2label))
 
 
 
 
 
101
 
102
 
103
+ _ = """
104
  res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy,
105
  label_mapping={"NEGATIVE": 0, "POSITIVE": 1},)
106
  res_f11 = eval.compute(model_or_pipeline=pipe1, data=data, metric=f1,