Spaces:
Build error
Build error
import gradio as gr | |
from datasets import load_dataset | |
from PIL import Image | |
from collections import OrderedDict | |
from random import sample | |
import csv | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
import random | |
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224") | |
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224") | |
classdict = OrderedDict() | |
for line in open('LOC_synset_mapping.txt', 'r').readlines(): | |
try: | |
classdict[line.split(' ')[0]]= ' '.join(line.split(' ')[1:]).replace('\n','').split(',')[0] | |
except: | |
continue | |
classes = list(classdict.values()) | |
imagedict={} | |
with open('image_labels.csv', 'r') as csv_file: | |
reader = csv.DictReader(csv_file) | |
for row in reader: | |
imagedict[row['image_name']] = row['image_label'] | |
images= list(imagedict.keys()) | |
labels = list(set(imagedict.values())) | |
def model_classify(radio, im): | |
if radio is not None: | |
inputs = feature_extractor(images=im, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_idx = logits.argmax(-1).item() | |
modelclass=model.config.id2label[predicted_class_idx] | |
return modelclass.split(',')[0], predicted_class_idx, True | |
else: | |
return None, None, False | |
def random_image(): | |
imname = random.choice(images) | |
im = Image.open('images/'+ imname +'.jpg') | |
label = str(imagedict[imname]) | |
labels.remove(label) | |
options = sample(labels,3) | |
options.append(label) | |
random.shuffle(options) | |
options = [classes[int(i)] for i in options] | |
return im, label, gr.Radio.update(value=None, choices=options), None | |
def check_score(pred, truth, current_score, total_score, has_guessed): | |
if not(has_guessed): | |
if pred == classes[int(truth)]: | |
total_score +=1 | |
return current_score + 1, f"Your score is {current_score+1} out of {total_score}!", total_score | |
else: | |
if pred is not None: | |
total_score +=1 | |
return current_score, f"Your score is {current_score} out of {total_score}!", total_score | |
else: | |
return current_score, f"Your score is {current_score} out of {total_score}!", total_score | |
def compare_score(userclass, truth): | |
if userclass is None: | |
return"Try guessing a category!" | |
else: | |
if userclass == classes[int(truth)]: | |
return "Great! You guessed it right" | |
else: | |
return "The right answer was " +str(classes[int(truth)])+ "! Try guessing the next image." | |
with gr.Blocks() as demo: | |
user_score = gr.State(0) | |
model_score = gr.State(0) | |
image_label = gr.State() | |
model_class = gr.State() | |
total_score = gr.State(0) | |
has_guessed = gr.State(False) | |
gr.Markdown("# ImageNet Quiz") | |
gr.Markdown("### ImageNet is one of the most popular datasets used for training and evaluating AI models.") | |
gr.Markdown("### But many of its categories are hard to guess, even for humans.") | |
gr.Markdown("#### Try your hand at guessing the category of each image displayed, from the options provided. Compare your answers to that of a neural network trained on the dataset, and see if you can do better!") | |
with gr.Row(): | |
with gr.Column(min_width= 900): | |
image = gr.Image(shape=(600, 600)) | |
radio = gr.Radio(["option1", "option2", "option3"], label="Pick a category", interactive=True) | |
with gr.Column(): | |
prediction = gr.Label(label="The AI model predicts:") | |
score = gr.Label(label="Your Score") | |
message = gr.Label(label="Did you guess it right?") | |
btn = gr.Button("Next image") | |
demo.load(random_image, None, [image, image_label, radio, prediction]) | |
radio.change(model_classify, [radio, image], [prediction, model_class, has_guessed]) | |
radio.change(check_score, [radio, image_label, user_score, total_score, has_guessed], [user_score, score, total_score]) | |
radio.change(compare_score, [radio, image_label], message) | |
btn.click(random_image, None, [image, image_label, radio, prediction]) | |
btn.click(lambda :False, None, has_guessed) | |
demo.launch() | |