ImageNetQuiz / app.py
sashavor
trying to fix the score
088c61e
raw
history blame
4.21 kB
import gradio as gr
from datasets import load_dataset
from PIL import Image
from collections import OrderedDict
from random import sample
import csv
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import random
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224")
classdict = OrderedDict()
for line in open('LOC_synset_mapping.txt', 'r').readlines():
try:
classdict[line.split(' ')[0]]= ' '.join(line.split(' ')[1:]).replace('\n','').split(',')[0]
except:
continue
classes = list(classdict.values())
imagedict={}
with open('image_labels.csv', 'r') as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
imagedict[row['image_name']] = row['image_label']
images= list(imagedict.keys())
labels = list(set(imagedict.values()))
def model_classify(radio, im):
if radio is not None:
inputs = feature_extractor(images=im, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
modelclass=model.config.id2label[predicted_class_idx]
return modelclass.split(',')[0], predicted_class_idx, True
else:
return None, None, False
def random_image():
imname = random.choice(images)
im = Image.open('images/'+ imname +'.jpg')
label = str(imagedict[imname])
labels.remove(label)
options = sample(labels,3)
options.append(label)
random.shuffle(options)
options = [classes[int(i)] for i in options]
return im, label, gr.Radio.update(value=None, choices=options), None
def check_score(pred, truth, current_score, total_score, has_guessed):
if not(has_guessed):
if pred == classes[int(truth)]:
total_score +=1
return current_score + 1, f"Your score is {current_score+1} out of {total_score}!", total_score
else:
if pred is not None:
total_score +=1
return current_score, f"Your score is {current_score} out of {total_score}!", total_score
else:
return current_score, f"Your score is {current_score} out of {total_score}!", total_score
def compare_score(userclass, truth):
if userclass is None:
return"Try guessing a category!"
else:
if userclass == classes[int(truth)]:
return "Great! You guessed it right"
else:
return "The right answer was " +str(classes[int(truth)])+ "! Try guessing the next image."
with gr.Blocks() as demo:
user_score = gr.State(0)
model_score = gr.State(0)
image_label = gr.State()
model_class = gr.State()
total_score = gr.State(0)
has_guessed = gr.State(False)
gr.Markdown("# ImageNet Quiz")
gr.Markdown("### ImageNet is one of the most popular datasets used for training and evaluating AI models.")
gr.Markdown("### But many of its categories are hard to guess, even for humans.")
gr.Markdown("#### Try your hand at guessing the category of each image displayed, from the options provided. Compare your answers to that of a neural network trained on the dataset, and see if you can do better!")
with gr.Row():
with gr.Column(min_width= 900):
image = gr.Image(shape=(600, 600))
radio = gr.Radio(["option1", "option2", "option3"], label="Pick a category", interactive=True)
with gr.Column():
prediction = gr.Label(label="The AI model predicts:")
score = gr.Label(label="Your Score")
message = gr.Label(label="Did you guess it right?")
btn = gr.Button("Next image")
demo.load(random_image, None, [image, image_label, radio, prediction])
radio.change(model_classify, [radio, image], [prediction, model_class, has_guessed])
radio.change(check_score, [radio, image_label, user_score, total_score, has_guessed], [user_score, score, total_score])
radio.change(compare_score, [radio, image_label], message)
btn.click(random_image, None, [image, image_label, radio, prediction])
btn.click(lambda :False, None, has_guessed)
demo.launch()