AI_Carbon / app.py
sashavor
changing input
eda3176
raw
history blame
11.9 kB
import streamlit as st
import pandas as pd
import os, csv
from huggingface_hub import hf_hub_download, HfApi
import math
HF_TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
CACHED_FILE_PATH = hf_hub_download(repo_id="sasha/co2_submissions", filename="co2_emissions.csv", repo_type="dataset")
api = HfApi()
def write_to_csv(hardware, gpu_tdp, num_gpus, training_time, provider, carbon_intensity, dynamic_emissions, experimentation_time, experimental_emissions, pue, pue_emissions, embodied_type, embodied_emissions, model_info):
with open(CACHED_FILE_PATH,'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([hardware, gpu_tdp, num_gpus, training_time, provider, carbon_intensity, dynamic_emissions, experimentation_time, experimental_emissions, pue, pue_emissions, embodied_type, embodied_emissions, model_info])
api.upload_file(
path_or_fileobj=CACHED_FILE_PATH,
path_in_repo="co2_emissions.csv",
repo_id="sasha/co2_submissions",
repo_type="dataset",
)
st.set_page_config(
page_title="AI Carbon Calculator",
layout="wide",
)
tdp_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/gpus.csv"
compute_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/impact.csv"
electricity_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/2021-10-27yearly_averages.csv"
server_sheet_id = "1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k"
server_sheet_name = "Server%20Carbon%20Footprint"
server_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={server_sheet_name}"
embodied_gpu_sheet_name = "Scope%203%20Ratios"
embodied_gpu_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={embodied_gpu_sheet_name}"
TDP =pd.read_csv(tdp_url)
instances = pd.read_csv(compute_url)
providers = [p.upper() for p in instances['provider'].unique().tolist()]
providers.append('Local/Private Infastructure')
### Default values
hardware = "N/A"
gpu_tdp = 0
num_gpus = 0
training_time = 0.0
provider = "N/A"
carbon_intensity = 0.0
dynamic_emissions = 0.0
experimentation_time = 0.0
experimental_emissions = 0.0
pue = 1.0
pue_emissions = 0.0
embodied_type = 0.0
embodied_emissions = 0.0
model_info = "N/A"
### Conversion factors
kg_per_mile = 0.348
embodied_conversion_factor = 0.0289
electricity = pd.read_csv(electricity_url)
servers = pd.read_csv(server_url)
embodied_gpu = pd.read_csv(embodied_gpu_url)
#st.image('images/MIT_carbon_image_narrow.png', use_column_width=True, caption = 'Image credit: ')
st.title("AI Carbon Calculator")
st.markdown('## Estimate your AI model\'s CO2 carbon footprint! 🌎πŸ–₯️🌎')
st.markdown('### Calculating the carbon footprint of AI models can be hard... this tool is here to help!')
st.markdown('##### Use the calculators below to calculate different aspects of your model\'s carbon footprint' \
'and don\'t forget to share your data to help the community better understand the carbon emissions of AI!')
st.markdown('### Dynamic Emissions πŸš€')
st.markdown('##### These are the emissions produced by generating the electricity necessary for powering model training.')
with st.expander("Calculate the dynamic emissions of your model"):
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
hardware = st.selectbox('Hardware used', TDP['name'].tolist())
gpu_tdp = TDP['tdp_watts'][TDP['name'] == hardware].tolist()[0]
st.markdown("Different hardware has different TDP (Thermal Design Power), which impacts how much energy you use.")
with col2:
num_gpus = st.text_input('Number of GPUs/CPUs/TPUs used', value = 16)
#st.markdown('This is calculated by multiplying the number of GPUs you used by the training time: '
# 'i.e. if you used 100 GPUs for 10 hours, this is equal to 100x10 = 1,000 GPU hours.')
with col3:
training_time = st.number_input('Total training time (in hours)', value = 0.0)
with col4:
provider = st.selectbox('Provider used', providers)
st.markdown('If you can\'t find your provider here, select "Local/Private Infrastructure".')
with col5:
if provider != 'Local/Private Infastructure':
provider_instances = instances['region'][instances['provider'] == provider.lower()].unique().tolist()
region = st.selectbox('Provider used', provider_instances)
carbon_intensity = instances['impact'][(instances['provider'] == provider.lower()) & (instances['region'] == region)].tolist()[0]
else:
carbon_intensity = st.number_input('Carbon intensity of your energy grid, in grams of CO2 per kWh')
st.markdown('You can consult a resource like the [IEA](https://www.iea.org/countries) or '
' [Electricity Map](https://app.electricitymaps.com/) to get this information.')
dynamic_emissions = round(gpu_tdp * float(num_gpus)*training_time * carbon_intensity/1000000)
st.metric(label="Dynamic emissions", value=str(dynamic_emissions)+' kilograms of CO2eq')
st.markdown('This is roughly equivalent to '+ str(round(dynamic_emissions/kg_per_mile,1)) + ' miles driven in an average US car'
' produced in 2021. [(Source: energy.gov)](https://www.energy.gov/eere/vehicles/articles/fotw-1223-january-31-2022-average-carbon-dioxide-emissions-2021-model-year)')
st.markdown('### Experimental Emissions πŸ‘©β€πŸ”¬')
st.markdown('##### These are the emissions produced by generating the electricity necessary for powering the experiments and tests needed to pick your final model architecture '
'and parameters.')
with st.expander("Calculate the experimental emissions of your model"):
st.markdown('##### Consult your training logs to figure out how many ablations, baselines and experiments were run before converging on the final model.')
experimentation_time = st.number_input(label='Number of hours of experimentation run', value=training_time)
st.markdown('##### As a baseline, language models such as [OPT](https://arxiv.org/pdf/2205.01068.pdf) and [BLOOM](https://arxiv.org/abs/2211.02001)'
' found that experimentation roughly doubles the amount of compute used by training the model itself.')
experimental_emissions = round(gpu_tdp * (experimentation_time) * carbon_intensity/1000000)
st.metric(label="Experimental emissions", value=str(0.0)+' kilograms of CO2eq')
st.markdown('### Datacenter (Overhead) Emissions 🌐')
st.markdown('##### These are the emissions produced by generating the electricity needed to power the rest of the infrastructure'
'used for model training -- the datacenter, network, heating/cooling, storage, etc.')
with st.expander("Calculate the idle emissions of your model"):
st.markdown('##### A proxy often used to reflect idle emissions is PUE (Power Usage Effectiveness), which represents '
' the ratio of energy used for computing overheads like cooling, which varies depending on the data center.')
pue = instances['PUE'][(instances['provider'] == provider.lower()) & (instances['region'] == region)].tolist()[0]
if math.isnan(pue) == True:
if provider != 'Local/Private Infastructure':
st.markdown('##### The exact information isn\'t available for this datacenter! We will use your provider\'s average instead, which is:')
if provider == 'AWS':
pue = 1.135
st.markdown('#### ' + str(pue)+ " [(source)](https://www.cloudcarbonfootprint.org/docs/methodology/)")
elif provider == 'GCP':
pue = 1.1
st.markdown('#### ' + str(pue) + " [(source)](https://www.google.ca/about/datacenters/efficiency/)")
elif provider == 'AZURE':
pue = 1.185
st.markdown('#### ' + str(pue) + " [(source)](https://www.cloudcarbonfootprint.org/docs/methodology/)")
elif provider == 'OVH':
pue = 1.28
st.markdown('#### ' + str(pue) + " [(source)](https://corporate.ovhcloud.com/en-ca/sustainability/environment/)")
elif provider == 'SCALEWAY':
pue = 1.35
st.markdown('#### ' +str(pue) + " [(source)](https://pue.dc3.scaleway.com/en/)")
else:
st.markdown('##### Try to find the PUE of your local infrastructure. Otherwise, you can use the industry average, 1.58:')
pue = st.slider('Total number of GPU hours', value = 1.58)
else:
st.markdown('##### The PUE of the datacenter you used is: ')
st.markdown('#### '+ str(pue))
pue_emissions = round((experimental_emissions+ dynamic_emissions)*pue)
st.metric(label="Emissions considering PUE", value=str(pue_emissions)+' kilograms of CO2eq')
st.markdown('### Embodied Emissions πŸ–₯οΈπŸ”¨')
st.markdown('##### These are the emissions associated with the materials and processes involved in producing'
' the computing equipment needed for AI models.')
with st.expander("Calculate the embodied emissions of your model"):
st.markdown('These are the trickiest emissions to track down since a lot of the information needed is missing.')
st.markdown('##### Based on the number of GPUs and training time you indicated above, we can estimate that your model\'s embodied emissions are approximately: ')
hardware_type = TDP['type'][TDP['name'] == hardware].tolist()[0]
if hardware_type == 'cpu':
embodied_type = embodied_gpu['Value'][embodied_gpu['Ratio']=='Manufacturing emissions per additional CPU (kgCOβ‚‚eq)'].tolist()[0]
elif hardware_type == 'gpu' or hardware_type == 'tpu':
embodied_type = embodied_gpu['Value'][embodied_gpu['Ratio']=='Manufacturing emissions per additionnal GPU Card (kgCOβ‚‚eq)'].tolist()[0]
embodied_emissions = round(int(embodied_type)*embodied_conversion_factor*num_gpus*training_time/1000,1)
st.metric(label="Embodied emissions", value=str(embodied_emissions)+' kilograms of CO2eq')
st.markdown('This is a high-level estimate based on an hourly manufacturing emissions conversion factor (linearly ammortised) of 0.0289 [(source)](https://docs.google.com/spreadsheets/d/1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k/).')
st.markdown('### Model Information ℹ️')
st.markdown('##### If you want to share the link to your model code or paper, please do so below! Otherwise, your submission will be anonymous.')
model_info = st.text_input(label= "Enter a link to your model (optional)")
m = st.markdown("""
<style>
div.stButton > button:first-child {
background-color: rgb(80, 200, 120);
background-image: none;
font-size: 25px;
height: 3em;
width: 15em;
}
</style>""", unsafe_allow_html=True)
buttoncol1, buttoncol2, buttoncol3 = st.columns(3)
with buttoncol2:
st.button(label="Share my CO2 data!", on_click = lambda *args: write_to_csv(hardware, gpu_tdp, num_gpus, training_time, provider, carbon_intensity, dynamic_emissions, experimentation_time, experimental_emissions, pue, pue_emissions, embodied_type, embodied_emissions, model_info))
st.markdown('### Methodology')
with st.expander("More information about our Methodology"):
st.markdown('Building on the work of the [ML CO2 Calculator](https://mlco2.github.io/impact/), this tool allows you to consider'
' other aspects of your model\'s carbon footprint based on the LCA methodology.')
st.markdown('We considered all of these aspects when calculating the CO2 emissions of BLOOM 🌸, a 176-billion parameter language model [(see our preprint!)](https://arxiv.org/abs/2211.02001)'')')
st.image('images/LCA_CO2.png', caption='The LCA methodology - the parts in green are those we focus on.')