KITT / main.py
sasan's picture
chore: Update TTS dependencies and remove unused imports
c690ade
raw
history blame
22.6 kB
import time
import gradio as gr
import numpy as np
import ollama
import torch
import torchaudio
import typer
from langchain.memory import ChatMessageHistory
from langchain.tools import tool
from langchain.tools.base import StructuredTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from loguru import logger
from transformers import pipeline
from kitt.core import tts_gradio
from kitt.core import utils as kitt_utils
from kitt.core import voice_options
# from kitt.core.model import process_query
from kitt.core.model import generate_function_call as process_query
from kitt.core.tts import prep_for_tts, run_melo_tts, run_tts_fast, run_tts_replicate
from kitt.skills import (
code_interpreter,
date_time_info,
do_anything_else,
extract_func_args,
find_route,
get_forecast,
get_weather,
get_weather_current_location,
search_along_route_w_coordinates,
search_points_of_interest,
set_vehicle_destination,
set_vehicle_speed,
)
from kitt.skills import vehicle_status as vehicle_status_fn
from kitt.skills.common import config, vehicle
from kitt.skills.routing import calculate_route, find_address
ORIGIN = "Luxembourg, Luxembourg"
DESTINATION = "Paris, France"
DEFAULT_LLM_BACKEND = "replicate"
ENABLE_HISTORY = True
ENABLE_TTS = True
TTS_BACKEND = "local"
USER_PREFERENCES = "User loves italian food."
global_context = {
"vehicle": vehicle,
"query": "How is the weather?",
"route_points": [],
"origin": ORIGIN,
"destination": DESTINATION,
"enable_history": ENABLE_HISTORY,
"tts_enabled": ENABLE_TTS,
"tts_backend": TTS_BACKEND,
"llm_backend": DEFAULT_LLM_BACKEND,
"map_origin": ORIGIN,
"map_destination": DESTINATION,
"update_proxy": 0,
"map": None,
}
speaker_embedding_cache = {}
history = ChatMessageHistory()
MODEL_FUNC = "nexusraven"
MODEL_GENERAL = "llama3:instruct"
RAVEN_PROMPT_FUNC = """You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on."
{raven_tools}
{history}
User Query: Question: {input}<human_end>
"""
HERMES_PROMPT_FUNC = """
<|im_start|>system
You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on.<|im_end|>
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"""
def get_prompt(template, input, history, tools):
# "vehicle_status": vehicle_status_fn()[0]
kwargs = {"history": history, "input": input}
prompt = "<human>:\n"
for tool in tools:
func_signature, func_docstring = tool.description.split(" - ", 1)
prompt += f'Function:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
kwargs["raven_tools"] = prompt
if history:
kwargs["history"] = f"Previous conversation history:{history}\n"
return template.format(**kwargs).replace("{{", "{").replace("}}", "}")
def use_tool(func_name, kwargs, tools):
for tool in tools:
if tool.name == func_name:
return tool.invoke(input=kwargs)
return None
# llm = Ollama(model="nexusraven", stop=["\nReflection:", "\nThought:"], keep_alive=60*10)
# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00:00" for i in range(24)]
@tool
def search_along_route(query=""):
"""Search for points of interest along the route/way to the destination.
Args:
query (str, optional): The type of point of interest to search for. Defaults to "restaurant".
"""
points = global_context["route_points"]
# maybe reshape
return search_along_route_w_coordinates(points, query)
def set_time(time_picker):
vehicle.time = time_picker
return vehicle
tools = [
# StructuredTool.from_function(get_weather),
# StructuredTool.from_function(find_route),
# StructuredTool.from_function(vehicle_status_fn),
# StructuredTool.from_function(set_vehicle_speed),
# StructuredTool.from_function(set_vehicle_destination),
# StructuredTool.from_function(search_points_of_interest),
# StructuredTool.from_function(search_along_route),
# StructuredTool.from_function(date_time_info),
# StructuredTool.from_function(get_weather_current_location),
# StructuredTool.from_function(code_interpreter),
# StructuredTool.from_function(do_anything_else),
]
functions = [
# set_vehicle_speed,
set_vehicle_destination,
get_weather,
find_route,
search_points_of_interest,
search_along_route,
]
openai_tools = [convert_to_openai_tool(tool) for tool in functions]
def run_generic_model(query):
print(f"Running the generic model with query: {query}")
data = {
"prompt": f"Answer the question below in a short and concise manner.\n{query}",
"model": MODEL_GENERAL,
"options": {
# "temperature": 0.1,
# "stop":["\nReflection:", "\nThought:"]
},
}
out = ollama.generate(**data)
return out["response"]
def clear_history():
logger.info("Clearing the conversation history...")
history.clear()
def run_nexusraven_model(query, voice_character, state):
global_context["prompt"] = get_prompt(RAVEN_PROMPT_FUNC, query, "", tools)
print("Prompt: ", global_context["prompt"])
data = {
"prompt": global_context["prompt"],
# "streaming": False,
"model": "nexusraven",
# "model": "smangrul/llama-3-8b-instruct-function-calling",
"raw": True,
"options": {"temperature": 0.5, "stop": ["\nReflection:", "\nThought:"]},
}
out = ollama.generate(**data)
llm_response = out["response"]
if "Call: " in llm_response:
print(f"llm_response: {llm_response}")
llm_response = llm_response.replace("<bot_end>", " ")
func_name, kwargs = extract_func_args(llm_response)
print(f"Function: {func_name}, Args: {kwargs}")
if func_name == "do_anything_else":
output_text = run_generic_model(query)
else:
output_text = use_tool(func_name, kwargs, tools)
else:
output_text = out["response"]
if type(output_text) == tuple:
output_text = output_text[0]
gr.Info(f"Output text: {output_text}\nGenerating voice output...")
return (
output_text,
tts_gradio(output_text, voice_character, speaker_embedding_cache)[0],
)
def run_llama3_model(query, voice_character, state):
assert len(functions) > 0, "No functions to call"
assert len(openai_tools) > 0, "No openai tools to call"
output_text = process_query(
query,
history=history,
user_preferences=state["user_preferences"],
tools=openai_tools,
functions=functions,
backend=state["llm_backend"],
)
gr.Info(f"Output text: {output_text}\nGenerating voice output...")
output_text_tts = prep_for_tts(output_text)
voice_out = None
if global_context["tts_enabled"]:
if "Fast" in voice_character:
voice_out = run_melo_tts(output_text_tts, voice_character)
elif global_context["tts_backend"] == "replicate":
voice_out = run_tts_replicate(output_text_tts, voice_character)
else:
voice_out = tts_gradio(
output_text_tts, voice_character, speaker_embedding_cache
)[0]
#
# voice_out = run_tts_fast(output_text)[0]
#
return (
output_text,
voice_out,
)
def run_model(query, voice_character, state):
model = state.get("model", "nexusraven")
query = query.strip().replace("'", "")
logger.info(
f"Running model: {model} with query: {query}, voice_character: {voice_character} and llm_backend: {state['llm_backend']}, tts_enabled: {state['tts_enabled']}"
)
global_context["query"] = query
if model == "nexusraven":
text, voice = run_nexusraven_model(query, voice_character, state)
elif model == "llama3":
text, voice = run_llama3_model(query, voice_character, state)
else:
text, voice = "Error running model", None
if not state["enable_history"]:
history.clear()
global_context["update_proxy"] += 1
return (
text,
voice,
vehicle.model_dump(),
state,
dict(update_proxy=global_context["update_proxy"]),
)
def calculate_route_gradio(origin, destination):
_, points = calculate_route(origin, destination)
plot = kitt_utils.plot_route(points, vehicle=vehicle.location_coordinates)
global_context["map"] = plot
global_context["route_points"] = points
# state.value["route_points"] = points
vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
return plot, vehicle.model_dump(), 0
def update_vehicle_status(trip_progress, origin, destination, state):
if not global_context["route_points"]:
_, points = calculate_route(origin, destination)
global_context["route_points"] = points
global_context["destination"] = destination
global_context["route_points"] = global_context["route_points"]
n_points = len(global_context["route_points"])
index = min(int(trip_progress / 100 * n_points), n_points - 1)
logger.info(f"Trip progress: {trip_progress} len: {n_points}, index: {index}")
new_coords = global_context["route_points"][index]
new_coords = new_coords["latitude"], new_coords["longitude"]
logger.info(
f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}"
)
vehicle.location_coordinates = new_coords
new_vehicle_location = find_address(new_coords[0], new_coords[1])
vehicle.location = new_vehicle_location
plot = kitt_utils.plot_route(
global_context["route_points"], vehicle=vehicle.location_coordinates
)
return vehicle, plot, state
device = "cuda" if torch.cuda.is_available() else "cpu"
transcriber = pipeline(
"automatic-speech-recognition", model="openai/whisper-base.en", device=device
)
def save_audio_as_wav(data, sample_rate, file_path):
# make a tensor from the numpy array
data = torch.tensor(data).reshape(1, -1)
torchaudio.save(
file_path, data, sample_rate=sample_rate, bits_per_sample=16, encoding="PCM_S"
)
def save_and_transcribe_audio(audio):
try:
# capture the audio and save it to a file as wav or mp3
# file_name = save("audioinput.wav")
sr, y = audio
# y = y.astype(np.float32)
# y /= np.max(np.abs(y))
# add timestamp to file name
filename = f"recordings/audio{time.time()}.wav"
save_audio_as_wav(y, sr, filename)
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
text = transcriber({"sampling_rate": sr, "raw": y})["text"]
gr.Info(f"Transcribed text is: {text}\nProcessing the input...")
except Exception as e:
logger.error(f"Error: {e}")
raise Exception("Error transcribing audio.")
return text
def save_and_transcribe_run_model(audio, voice_character, state):
text = save_and_transcribe_audio(audio)
out_text, out_voice, vehicle_status, state, update_proxy = run_model(
text, voice_character, state
)
return None, text, out_text, out_voice, vehicle_status, state, update_proxy
def set_tts_enabled(tts_enabled, state):
new_tts_enabled = tts_enabled == "Yes"
logger.info(
f"TTS enabled was {state['tts_enabled']} and changed to {new_tts_enabled}"
)
state["tts_enabled"] = new_tts_enabled
global_context["tts_enabled"] = new_tts_enabled
return state
def set_llm_backend(llm_backend, state):
new_llm_backend = "ollama" if llm_backend == "Ollama" else "replicate"
logger.info(
f"LLM backend was {state['llm_backend']} and changed to {new_llm_backend}"
)
state["llm_backend"] = new_llm_backend
global_context["llm_backend"] = new_llm_backend
return state
def set_user_preferences(preferences, state):
new_preferences = preferences
logger.info(f"User preferences changed to: {new_preferences}")
state["user_preferences"] = new_preferences
global_context["user_preferences"] = new_preferences
return state
def set_enable_history(enable_history, state):
new_enable_history = enable_history == "Yes"
logger.info(
f"Enable history was {state['enable_history']} and changed to {new_enable_history}"
)
state["enable_history"] = new_enable_history
global_context["enable_history"] = new_enable_history
return state
def set_tts_backend(tts_backend, state):
new_tts_backend = tts_backend.lower()
logger.info(
f"TTS backend was {state['tts_backend']} and changed to {new_tts_backend}"
)
state["tts_backend"] = new_tts_backend
global_context["tts_backend"] = new_tts_backend
return state
def conditional_update():
if global_context["destination"] != vehicle.destination:
global_context["destination"] = vehicle.destination
if global_context["origin"] != vehicle.location:
global_context["origin"] = vehicle.location
if (
global_context["map_origin"] != vehicle.location
or global_context["map_destination"] != vehicle.destination
or global_context["update_proxy"] == 0
):
logger.info(f"Updating the map plot... in conditional_update")
map_plot, _, _ = calculate_route_gradio(vehicle.location, vehicle.destination)
global_context["map"] = map_plot
return global_context["map"]
# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome
# example question:
# what's the weather like outside?
# What's the closest restaurant from here?
def create_demo(tts_server: bool = False, model="llama3"):
print(f"Running the demo with model: {model} and TTSServer: {tts_server}")
with gr.Blocks(theme=gr.themes.Default()) as demo:
state = gr.State(
value={
# "context": initial_context,
"query": "",
"route_points": [],
"model": model,
"tts_enabled": ENABLE_TTS,
"llm_backend": DEFAULT_LLM_BACKEND,
"user_preferences": USER_PREFERENCES,
"enable_history": ENABLE_HISTORY,
"tts_backend": TTS_BACKEND,
"destination": DESTINATION,
}
)
plot, _, _ = calculate_route_gradio(ORIGIN, DESTINATION)
global_context["map"] = plot
with gr.Row():
with gr.Column(scale=1, min_width=300):
vehicle_status = gr.JSON(
value=vehicle.model_dump(), label="Vehicle status"
)
time_picker = gr.Dropdown(
choices=hour_options,
label="What time is it? (HH:MM)",
value="08:00:00",
interactive=True,
)
voice_character = gr.Radio(
choices=voice_options,
label="Choose a voice",
value=voice_options[0],
show_label=True,
)
# voice_character = gr.Textbox(
# label="Choose a voice",
# value="freeman",
# show_label=True,
# )
origin = gr.Textbox(
value=ORIGIN,
label="Origin",
interactive=True,
)
destination = gr.Textbox(
value=DESTINATION,
label="Destination",
interactive=True,
)
preferences = gr.Textbox(
value=USER_PREFERENCES,
label="User preferences",
lines=3,
interactive=True,
)
with gr.Column(scale=2, min_width=600):
map_plot = gr.Plot(value=plot, label="Map")
trip_progress = gr.Slider(
0, 100, step=5, label="Trip progress", interactive=True
)
# map_if = gr.Interface(fn=plot_map, inputs=year_input, outputs=map_plot)
with gr.Row():
with gr.Column():
input_audio = gr.Audio(
type="numpy",
sources=["microphone"],
label="Input audio",
elem_id="input_audio",
)
input_text = gr.Textbox(
value="How is the weather?", label="Input text", interactive=True
)
with gr.Accordion("Debug"):
input_audio_debug = gr.Audio(
type="numpy",
sources=["microphone"],
label="Input audio",
elem_id="input_audio",
)
input_text_debug = gr.Textbox(
value="How is the weather?",
label="Input text",
interactive=True,
)
update_proxy = gr.JSON(
value=dict(update_proxy=0),
label="Global context",
)
with gr.Accordion("Config"):
tts_enabled = gr.Radio(
["Yes", "No"],
label="Enable TTS",
value="Yes" if ENABLE_TTS else "No",
interactive=True,
)
tts_backend = gr.Radio(
["Local", "Replicate"],
label="TTS Backend",
value=TTS_BACKEND.title(),
interactive=True,
)
llm_backend = gr.Radio(
choices=["Ollama", "Replicate"],
label="LLM Backend",
value=DEFAULT_LLM_BACKEND.title(),
interactive=True,
)
enable_history = gr.Radio(
["Yes", "No"],
label="Maintain the conversation history?",
value="Yes" if ENABLE_HISTORY else "No",
interactive=True,
)
# Push button
clear_history_btn = gr.Button(value="Clear History")
with gr.Column():
output_audio = gr.Audio(label="output audio", autoplay=True)
output_text = gr.TextArea(
value="", label="Output text", interactive=False
)
# Update plot based on the origin and destination
# Sets the current location and destination
origin.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status, trip_progress],
)
destination.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status, trip_progress],
)
preferences.submit(
fn=set_user_preferences, inputs=[preferences, state], outputs=[state]
)
# Update time based on the time picker
time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])
# Run the model if the input text is changed
input_text.submit(
fn=run_model,
inputs=[input_text, voice_character, state],
outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
)
input_text_debug.submit(
fn=run_model,
inputs=[input_text_debug, voice_character, state],
outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
)
# Set the vehicle status based on the trip progress
trip_progress.release(
fn=update_vehicle_status,
inputs=[trip_progress, origin, destination, state],
outputs=[vehicle_status, map_plot, state],
)
# Save and transcribe the audio
input_audio.stop_recording(
fn=save_and_transcribe_run_model,
inputs=[input_audio, voice_character, state],
outputs=[
input_audio,
input_text,
output_text,
output_audio,
vehicle_status,
state,
update_proxy,
],
)
input_audio_debug.stop_recording(
fn=save_and_transcribe_audio,
inputs=[input_audio_debug],
outputs=[input_text_debug],
)
# Clear the history
clear_history_btn.click(fn=clear_history, inputs=[], outputs=[])
# Config
tts_enabled.change(
fn=set_tts_enabled, inputs=[tts_enabled, state], outputs=[state]
)
tts_backend.change(
fn=set_tts_backend, inputs=[tts_backend, state], outputs=[state]
)
llm_backend.change(
fn=set_llm_backend, inputs=[llm_backend, state], outputs=[state]
)
enable_history.change(
fn=set_enable_history, inputs=[enable_history, state], outputs=[state]
)
update_proxy.change(fn=conditional_update, inputs=[], outputs=[map_plot])
return demo
# close all interfaces open to make the port available
gr.close_all()
demo = create_demo(False, "llama3")
demo.launch(
debug=True,
server_name="0.0.0.0",
server_port=7860,
ssl_verify=False,
share=False,
)
app = typer.Typer()
@app.command()
def run(tts_server: bool = False):
global demo
demo = create_demo(tts_server)
demo.launch(
debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=True, share=True
)
@app.command()
def dev(tts_server: bool = False, model: str = "llama3"):
demo = create_demo(tts_server, model)
demo.launch(
debug=True,
server_name="0.0.0.0",
server_port=7860,
ssl_verify=False,
share=False,
)
if __name__ == "__main__":
app()