saritha commited on
Commit
85a8047
1 Parent(s): 8f170e8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
4
+ from langchain_community.document_loaders import WebBaseLoader
5
+ from langchain.embeddings import OllamaEmbeddings
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain.chains.combine_documents import create_stuff_documents_chain
8
+ from langchain_core.prompts import ChatPromptTemplate
9
+ from langchain_core.output_parsers import StrOutputParser
10
+ from langchain.chains import create_retrieval_chain
11
+ from langchain_community.vectorstores import FAISS
12
+ from langchain_community.document_loaders import PyPDFDirectoryLoader
13
+ import time
14
+ import requests
15
+ import os
16
+ from dotenv import load_dotenv
17
+
18
+ load_dotenv()
19
+
20
+ ## load the Groq API key
21
+ os.environ['NVIDIA_API_KEY'] = os.environ.get('api_key')
22
+
23
+ def vector_embedding():
24
+ if "vectors" not in st.session_state:
25
+ st.session_state.embeddings = NVIDIAEmbeddings()
26
+ st.session_state.loader = PyPDFDirectoryLoader("./documents") # Data Ingestion
27
+ st.session_state.docs = st.session_state.loader.load() # Document Loading
28
+ st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=50) # Chunk Creation
29
+ st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) # Splitting
30
+ print("hEllo")
31
+ st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector OpenAI embeddings
32
+
33
+ st.title("Ayurvedic Chatbot using Nvidia NIM")
34
+ llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
35
+
36
+ prompt = ChatPromptTemplate.from_template(
37
+ """
38
+ Answer the questions based on the provided context only.
39
+ Please provide the most accurate response based on the question.
40
+ Give a detailed answer for the question.
41
+ <context>
42
+ {context}
43
+ <context>
44
+ Questions:{input}
45
+ """
46
+ )
47
+
48
+ prompt1 = st.text_input("Enter Your Question From related to Ayurvedic Herbs?")
49
+
50
+ if st.button("Documents Embedding"):
51
+ vector_embedding()
52
+ st.write("Vector Store DB Is Ready")
53
+
54
+ if prompt1:
55
+ # Ensure vectors are initialized before proceeding
56
+ if "vectors" not in st.session_state:
57
+ st.warning("Please embed the documents first by clicking the 'Documents Embedding' button.")
58
+ else:
59
+ document_chain = create_stuff_documents_chain(llm, prompt)
60
+ retriever = st.session_state.vectors.as_retriever()
61
+ retrieval_chain = create_retrieval_chain(retriever, document_chain)
62
+ start = time.process_time()
63
+
64
+ try:
65
+ response = retrieval_chain.invoke({'input': prompt1})
66
+ except requests.exceptions.SSLError as e:
67
+ st.error("SSL error occurred: {}".format(e))
68
+ response = None
69
+
70
+ if response:
71
+ print("Response time:", time.process_time() - start)
72
+ st.write(response['answer'])
73
+
74
+ # With a streamlit expander
75
+ with st.expander("Document Similarity Search"):
76
+ # Find the relevant chunks
77
+ for i, doc in enumerate(response["context"]):
78
+ st.write(doc.page_content)
79
+ st.write("--------------------------------")