Spaces:
Running
Running
from pathlib import Path | |
import numpy as np | |
import torch | |
import json | |
from sklearn.metrics.pairwise import cosine_distances | |
from .plda_model import PLDAModel | |
from .demo_speaker_embeddings import DemoSpeakerEmbeddings | |
class DemoPoolAnonymizer: | |
def __init__(self, vec_type='xvector', N=200, N_star=100, distance='plda', proximity='farthest', device=None): | |
# Pool anonymization method based on the primary baseline of the Voice Privacy Challenge 2020. | |
# Given a speaker vector, the N most distant vectors in an external speaker pool are extracted, | |
# and an average of a random subset of N_star vectors is computed and taken as new speaker vector. | |
# Default distance measure is PLDA. | |
self.vec_type = vec_type | |
self.device = device | |
self.N = N # number of most distant vectors to consider | |
self.N_star = N_star # number of vectors to include in averaged vector | |
self.distance = distance # distance measure, either 'plda' or 'cosine' | |
self.proximity = proximity # proximity method, either 'farthest' (distant vectors), 'nearest', or 'closest' | |
self.embedding_extractor = DemoSpeakerEmbeddings(vec_type=self.vec_type, device=self.device) | |
self.pool_embeddings = None | |
self.plda = None | |
def load_parameters(self, model_dir: Path): | |
self._load_settings(model_dir / 'settings.json') | |
self.pool_embeddings = torch.load(model_dir / 'pool_embeddings' / f'speaker_vectors.pt', | |
map_location=self.device) | |
if self.distance == 'plda': | |
self.plda = PLDAModel(train_embeddings=None, results_path=model_dir) | |
def anonymize_embedding(self, audio, sr): | |
speaker_embedding = self.embedding_extractor.extract_vector_from_audio(wave=audio, sr=sr) | |
distances = self._compute_distances(vectors_a=self.pool_embeddings, | |
vectors_b=speaker_embedding.unsqueeze(0)).squeeze() | |
candidates = self._get_pool_candidates(distances) | |
selected_anon_pool = np.random.choice(candidates, self.N_star, replace=False) | |
anon_vec = torch.mean(self.pool_embeddings[selected_anon_pool], dim=0) | |
return anon_vec | |
def _compute_distances(self, vectors_a, vectors_b): | |
if self.distance == 'plda': | |
return 1 - self.plda.compute_distance(enrollment_vectors=vectors_a, trial_vectors=vectors_b) | |
elif self.distance == 'cosine': | |
return cosine_distances(X=vectors_a.cpu(), Y=vectors_b.cpu()) | |
else: | |
return [] | |
def _get_pool_candidates(self, distances): | |
if self.proximity == 'farthest': | |
return np.argpartition(distances, -self.N)[-self.N:] | |
elif self.proximity == 'nearest': | |
return np.argpartition(distances, self.N)[:self.N] | |
elif self.proximity == 'center': | |
sorted_distances = np.sort(distances) | |
return sorted_distances[len(sorted_distances)//2:(len(sorted_distances)//2)+self.N] | |
def _load_settings(self, filename): | |
with open(filename, 'r') as f: | |
settings = json.load(f) | |
self.N = settings['N'] if 'N' in settings else self.N | |
self.N_star = settings['N*'] if 'N*' in settings else self.N_star | |
self.distance = settings['distance'] if 'distance' in settings else self.distance | |
self.proximity = settings['proximity'] if 'proximity' in settings else self.proximity | |
self.vec_type = settings['vec_type'] if 'vec_type' in settings else self.vec_type | |