Spaces:
Running
Running
import librosa.display as lbd | |
import matplotlib.pyplot as plt | |
import soundfile | |
import torch | |
from .InferenceArchitectures.InferenceFastSpeech2 import FastSpeech2 | |
from .InferenceArchitectures.InferenceHiFiGAN import HiFiGANGenerator | |
from ..Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend | |
from ..Preprocessing.ArticulatoryCombinedTextFrontend import get_language_id | |
class AnonFastSpeech2(torch.nn.Module): | |
def __init__(self, device: str, path_to_hifigan_model: str, path_to_fastspeech_model: str): | |
""" | |
Args: | |
device: Device to run on. CPU is feasible, still faster than real-time, but a GPU is significantly faster. | |
path_to_hifigan_model: Path to the vocoder model, including filename and suffix. | |
path_to_fastspeech_model: Path to the synthesis model, including filename and suffix. | |
""" | |
super().__init__() | |
language = "en" | |
self.device = device | |
self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True) | |
checkpoint = torch.load(path_to_fastspeech_model, map_location='cpu') | |
self.phone2mel = FastSpeech2(weights=checkpoint["model"], lang_embs=None).to(torch.device(device)) | |
self.mel2wav = HiFiGANGenerator(path_to_weights=path_to_hifigan_model).to(torch.device(device)) | |
self.default_utterance_embedding = checkpoint["default_emb"].to(self.device) | |
self.phone2mel.eval() | |
self.mel2wav.eval() | |
self.lang_id = get_language_id(language) | |
self.to(torch.device(device)) | |
def forward(self, text, view=False, text_is_phonemes=False): | |
""" | |
Args: | |
text: The text that the TTS should convert to speech | |
view: Boolean flag whether to produce and display a graphic showing the generated audio | |
text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False) | |
Returns: | |
48kHz waveform as 1d tensor | |
""" | |
with torch.no_grad(): | |
phones = self.text2phone.string_to_tensor(text, input_phonemes=text_is_phonemes).to(torch.device(self.device)) | |
mel, durations, pitch, energy = self.phone2mel(phones, | |
return_duration_pitch_energy=True, | |
utterance_embedding=self.default_utterance_embedding) | |
mel = mel.transpose(0, 1) | |
wave = self.mel2wav(mel) | |
if view: | |
from Utility.utils import cumsum_durations | |
fig, ax = plt.subplots(nrows=2, ncols=1) | |
ax[0].plot(wave.cpu().numpy()) | |
lbd.specshow(mel.cpu().numpy(), | |
ax=ax[1], | |
sr=16000, | |
cmap='GnBu', | |
y_axis='mel', | |
x_axis=None, | |
hop_length=256) | |
ax[0].yaxis.set_visible(False) | |
ax[1].yaxis.set_visible(False) | |
duration_splits, label_positions = cumsum_durations(durations.cpu().numpy()) | |
ax[1].set_xticks(duration_splits, minor=True) | |
ax[1].xaxis.grid(True, which='minor') | |
ax[1].set_xticks(label_positions, minor=False) | |
ax[1].set_xticklabels(self.text2phone.get_phone_string(text)) | |
ax[0].set_title(text) | |
plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.9, wspace=0.0, hspace=0.0) | |
plt.show() | |
return wave | |
def anonymize_to_file(self, text: str, text_is_phonemes: bool, target_speaker_embedding: torch.tensor, path_to_result_file: str): | |
""" | |
Args: | |
text: The text that the TTS should convert to speech | |
text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False) | |
target_speaker_embedding: The speaker embedding that should be used for the produced speech | |
path_to_result_file: The path to the location where the resulting speech should be saved (including the filename and .wav suffix) | |
""" | |
assert text.strip() != "" | |
assert path_to_result_file.endswith(".wav") | |
self.default_utterance_embedding = target_speaker_embedding.to(self.device) | |
wav = self(text=text, text_is_phonemes=text_is_phonemes) | |
soundfile.write(file=path_to_result_file, data=wav.cpu().numpy(), samplerate=48000) | |