sarim commited on
Commit
d37ff71
·
1 Parent(s): c1ded46

formate response

Browse files
Files changed (1) hide show
  1. app.py +14 -48
app.py CHANGED
@@ -18,63 +18,29 @@ from transformers import pipeline
18
  # pytesseract.pytesseract.tesseract_cmd = r’./Tesseract-OCR/tesseract.exe’
19
  choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
20
  description = """
21
- ## DocQA with 🤗 transformers, FastAPI, and Docker
22
- This app shows how to do Document Question Answering using
23
- FastAPI in a Docker Space 🚀
24
- Check out the docs for the `/predict` endpoint below to try it out!
25
  """
26
-
27
- # NOTE - we configure docs_url to serve the interactive Docs at the root path
28
- # of the app. This way, we can use the docs as a landing page for the app on Spaces.
29
  app = FastAPI(
30
- title="ChimichangApp",
31
  docs_url="/", description=description)
32
 
33
  pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
34
 
35
 
36
- #st.write(output)
37
-
38
- # @app.post("/predict")
39
- # def predict(image_file: bytes = File(...), question: str = Form(...)):
40
- # """
41
- # Using the document-question-answering pipeline from `transformers`, take
42
- # a given input document (image) and a question about it, and return the
43
- # predicted answer. The model used is available on the hub at:
44
- # [`impira/layoutlm-document-qa`](https://huggingface.co/impira/layoutlm-document-qa).
45
- # """
46
- # image = Image.open(BytesIO(image_file))
47
- # output = pipe(image, question)
48
- # return output
49
 
50
  @app.get("/hello_2")
51
  def read_root():
52
  image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
53
 
54
- question = "What is the invoice number?"
55
- output = pipe(image, question)
56
- return output
57
-
58
- @app.get("/hello_3")
59
- def read_root():
60
- image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
61
-
62
- question = "What is the invoice number?"
63
- output = pipe(image, question)
64
- return output
65
-
66
- @app.get("/hello_4")
67
- def read_root():
68
- image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
69
-
70
- question = "What is the invoice number?"
71
- output = pipe(image, question)
72
- return output
73
-
74
- @app.get("/hello")
75
- def read_root():
76
- image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
77
-
78
- question = "What is the invoice number?"
79
- output = pipe(image, question)
80
- return output
 
18
  # pytesseract.pytesseract.tesseract_cmd = r’./Tesseract-OCR/tesseract.exe’
19
  choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
20
  description = """
21
+ Upload Receipt and get
 
 
 
22
  """
 
 
 
23
  app = FastAPI(
24
+ title="ReceiptOCR",
25
  docs_url="/", description=description)
26
 
27
  pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
28
 
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  @app.get("/hello_2")
32
  def read_root():
33
  image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
34
 
35
+ question_1 = "What is the Total amount?"
36
+ question_2 = "What is Total VAT amount?"
37
+ question_3 = "What is the Date?"
38
+ output_1 = pipe(image, question_1)
39
+ output_2 = pipe(image, question_2)
40
+ output_3 = pipe(image, question_3)
41
+
42
+ response = {}
43
+ response['total amount'] = output_1.first['answer']
44
+ response['toal vat'] = output_2.first['answer']
45
+ response['date'] = output_3.first['answer']
46
+ return response