Spaces:
Running
Running
| // IMPORT LIBRARIES TOOLS | |
| import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1'; //HF transformers; | |
| import { Client } from 'https://cdn.jsdelivr.net/npm/@gradio/client/dist/index.min.js' // "@gradio/client"; | |
| // skip local model check | |
| env.allowLocalModels = false; | |
| // GLOBAL VARIABLES | |
| var promptArray = [] | |
| var PREPROMPT = `Please continue each sentence, filling in [MASK] with your own words:` | |
| var PROMPT_INPUT = `` // a field for writing or changing a text value | |
| var promptField // an html element to hold the prompt | |
| var outText, outPics, outInfo // html elements to hold the results | |
| var blanksArray = [] // an empty list to store all the variables we enter to modify the prompt | |
| // e.g. ["woman", "man", "non-binary person"] | |
| // // RUN IMAGE CAPTIONER //// W-I-P | |
| // async function captionTask(prompt){ | |
| // // PICK MODEL | |
| // let MODEL = 'Xenova/vit-gpt2-image-captioning' | |
| // const pipe = await pipeline("image-to-text", MODEL) | |
| // const out = await pipe(prompt) | |
| // out = JSON.stringify(out, null, 2) | |
| // } | |
| // GENERIC API CALL HANDLING | |
| async function post(request) { | |
| try { | |
| const response = await fetch(request); | |
| const result = await response.json(); | |
| console.log("Success:", result); | |
| } catch (error) { | |
| console.error("Error:", error); | |
| } | |
| } | |
| async function textImgTask(input){ | |
| console.log('text-to-image task initiated') | |
| let MODEL = "multimodalart/FLUX.1-merged" | |
| let INPUT = input | |
| const client = await Client.connect(MODEL); | |
| const result = await client.predict("/infer", { | |
| prompt: INPUT, | |
| seed: 0, | |
| randomize_seed: true, | |
| width: 256, | |
| height: 256, | |
| guidance_scale: 1, | |
| num_inference_steps: 1, | |
| }); | |
| console.log(result.data); | |
| let OUT = result.data[0] | |
| // const URL = 'https://multimodalart-flux-1-merged.hf.space/call/infer' | |
| // const seed = 0 | |
| // const randomizeSeed = true | |
| // const width = 1024 | |
| // const height = 1024 | |
| // const guidaneceScale = 3.5 | |
| // const inferenceSteps = 8 | |
| // const options = [ prompt[0], seed, randomizeSeed, width, height, guidaneceScale, inferenceSteps ] | |
| // const request = new Request(URL,{ | |
| // method: "POST", | |
| // body: JSON.stringify({"data": options }), | |
| // headers: { "Content-Type": "application/json" } | |
| // }) | |
| // let out = post(request) | |
| // console.log(out) | |
| // console.log("text-to-image task completed") | |
| return OUT | |
| } | |
| // RUN TEXT-GEN MODEL | |
| // async function textGenTask(pre, prompt, blanks){ | |
| async function textGenTask(pre, prompts){ | |
| console.log('text-gen task initiated') | |
| // Create concatenated prompt array including preprompt and all variable prompts | |
| // let promptArray = [] | |
| let PROMPTS = pre.concat(prompts) //adds the preprompt to the front of the prompts list | |
| console.log(PROMPTS) | |
| // // Fill in blanks from our sample prompt and make new prompts using our variable list 'blanksArray' | |
| // blanks.forEach(b => { | |
| // let p = prompt.replace('[BLANK]', b) // replace the string segment with an item from the blanksArray | |
| // promptArray.push(p) // add the new prompt to the list we created | |
| // }) | |
| // create combined fill prompt | |
| let INPUT = PROMPTS.toString() | |
| console.log(INPUT) | |
| // let INPUT = pre + prompt // simple concatenated input | |
| // let INPUT = prompt // basic prompt input | |
| // PICK MODEL | |
| let MODEL = 'Xenova/flan-alpaca-large' | |
| // MODELS LIST | |
| // - Xenova/bloom-560m | |
| // - Xenova/distilgpt2 | |
| // - Xenova/LaMini-Cerebras-256M | |
| // - Xenova/gpt-neo-125M // not working well | |
| // - Xenova/llama2.c-stories15M // only fairytails | |
| // - webml/TinyLlama-1.1B-Chat-v1.0 | |
| // - Xenova/TinyLlama-1.1B-Chat-v1.0 | |
| // - Xenova/flan-alpaca-large //text2text | |
| // const pipe = await pipeline('text-generation', MODEL) //different task type, also for text generation | |
| const pipe = await pipeline('text2text-generation', MODEL) | |
| var hyperparameters = { max_new_tokens: 300, top_k: 30, repetition_penalty: 1.5 } | |
| // setting hyperparameters | |
| // max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2, num_return_sequences: 2 (must be 1?) | |
| // change model run to iterative for each prompt generated locally — will be more expensive?? | |
| // promptArray.forEach(async i => {} //this was a loop to wrap model run multiple times | |
| // RUN INPUT THROUGH MODEL, | |
| var out = await pipe(INPUT, hyperparameters) | |
| console.log(await out) | |
| console.log('text-gen task completed') | |
| // PARSE RESULTS as a list of outputs, two different ways depending on the model | |
| // parsing of output | |
| // await out.forEach(o => { | |
| // console.log(o) | |
| // OUTPUT_LIST.push(o.generated_text) | |
| // }) | |
| // alternate format for parsing, for chat model type | |
| // await out.choices.forEach(o => { | |
| // console.log(o) | |
| // OUTPUT_LIST.push(o.message.content) | |
| // }) | |
| let OUTPUT_LIST = out[0].generated_text //not a list anymore just one result | |
| // OUTPUT_LIST.push(out[0].generated_text) | |
| console.log(OUTPUT_LIST) | |
| console.log('text-gen parsing complete') | |
| return await OUTPUT_LIST | |
| // return await out | |
| } | |
| // RUN FILL-IN MODEL | |
| async function fillInTask(input){ | |
| console.log('fill-in task initiated') | |
| // MODELS LIST | |
| // - Xenova/bert-base-uncased | |
| const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased'); | |
| var out = await pipe(input); | |
| console.log(await out) // yields { score, sequence, token, token_str } for each result | |
| let OUTPUT_LIST = [] // a blank array to store the results from the model | |
| // parsing of output | |
| await out.forEach(o => { | |
| console.log(o) // yields { score, sequence, token, token_str } for each result | |
| OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list | |
| }) | |
| console.log(await OUTPUT_LIST) | |
| console.log('fill-in task completed') | |
| // return await out | |
| return await OUTPUT_LIST | |
| } | |
| //// p5.js Instance | |
| new p5(function (p5){ | |
| p5.setup = function(){ | |
| p5.noCanvas() | |
| console.log('p5 instance loaded') | |
| makeTextModules() | |
| makeInputModule() | |
| makeOutputModule() | |
| } | |
| function makeTextModules(){ | |
| const introDiv = p5.createDiv().class('module').id('intro') | |
| p5.createElement('h1','p5.js Critical AI Prompt Battle').parent(introDiv) | |
| p5.createP(`What do AI models really 'know' about you — about your community, your language, your culture? What do they 'know' about different concepts, ideas, and worldviews?`).parent(introDiv) | |
| p5.createP(`This tool lets you compare the results of multiple AI-generated texts and images side-by-side, using blanks you fill in to explore variations on a single prompt. For more info on prompt programming and critical AI, see <A href="">[TUTORIAL-LINK]</a>.`).parent(introDiv) | |
| const instructDiv = p5.createDiv().id('instructions').parent(introDiv) | |
| p5.createElement('h4', 'INSTRUCTIONS').class('header').parent(introDiv) | |
| p5.createP(`Write your prompt using [BLANK] and [MASK], where [BLANK] will be the variation you choose and fill in below, and [MASK] is a variation that the model will complete.`).parent(introDiv) | |
| p5.createP(`For best results, try to phrase your prompt so that [BLANK] and [MASK] highlight the qualities you want to investigate. See <A href="">[EXAMPLES]</a>`).parent(introDiv) | |
| } | |
| function makeInputModule(){ | |
| const inputDiv = p5.createDiv().class('module', 'main').id('inputDiv') | |
| p5.createElement('h4', 'INPUT').parent(inputDiv) | |
| p5.createElement('h3', 'Enter your prompt').class('header').parent(inputDiv) | |
| p5.createP(`Write your prompt in the box below using one [BLANK] and one [MASK]`).parent(inputDiv) | |
| p5.createP(`e.g. Write "The [BLANK] was a [MASK]." and in the three blanks choose three occupations`).parent(inputDiv) | |
| p5.createP(`(This is taken from an actual example used to test GPT-3. (Brown et al. 2020, §6.2.1).)`).class('caption').parent(inputDiv) | |
| promptField = p5.createInput(PROMPT_INPUT).parent(inputDiv) // turns the string into an input; now access the text via PROMPT_INPUT.value() | |
| promptField.size(700) | |
| p5.createP(promptField.attribute('label')).parent(inputDiv) | |
| promptField.addClass("prompt") | |
| p5.createElement('h3', 'Fill in your blanks').class('header').parent(inputDiv) | |
| p5.createP('Add three words or phrases in the boxes below that will replace the [BLANK] in your prompt when the model runs.').parent(inputDiv) | |
| p5.createP('(e.g. doctor, secretary, circus performer)').parent(inputDiv) | |
| addField() | |
| addField() | |
| addField() | |
| // press to run model | |
| const submitButton = p5.createButton("RUN PROMPT") | |
| submitButton.size(170) | |
| submitButton.class('button').parent(inputDiv) | |
| submitButton.mousePressed(displayOutput) | |
| } | |
| function addField(){ | |
| let f = p5.createInput("").parent(inputDiv) | |
| f.class("blank") | |
| blanksArray.push(f) | |
| console.log("made variable field") | |
| // // Cap the number to avoids token limit | |
| // let blanks = document.querySelectorAll(".blank") | |
| // if (blanks.length > 3){ | |
| // console.log(blanks.length) | |
| // addButton.style('visibility','hidden') | |
| // } | |
| } | |
| // function makeButtons(){ | |
| // // // press to add more blanks to fill in | |
| // // const addButton = p5.createButton("more blanks") | |
| // // addButton.size(170) | |
| // // // addButton.position(220,500) | |
| // // addButton.mousePressed(addField) | |
| // } | |
| function makeOutputModule(){ | |
| const outputDiv = p5.createDiv().class('module').id('outputDiv') | |
| const outHeader = p5.createElement('h4',"OUTPUT").parent(outputDiv) | |
| // // make output placeholders | |
| // text-only output | |
| p5.createElement('h3', 'Text output').parent(outputDiv) | |
| outText = p5.createP('').id('outText').parent(outputDiv) | |
| // placeholder DIV for images and captions | |
| p5.createElement('h3', 'Text-to-image output').parent(outputDiv) | |
| outPics = p5.createDiv().id('outPics').parent(outputDiv) | |
| // print info about model, prompt, and hyperparams | |
| p5.createElement('h3', 'Prompting info').parent(outputDiv) | |
| outInfo = p5.createP('').id('outInfo').parent(outputDiv) | |
| } | |
| async function displayOutput(){ | |
| console.log('submitButton pressed') | |
| // insert waiting dots into results space of interface | |
| outText.html('...', false) | |
| // GRAB CURRENT FIELD INPUTS FROM PROMPT & BLANKS | |
| PROMPT_INPUT = promptField.value() // grab update to the prompt if it's been changed | |
| console.log("latest prompt: ", PROMPT_INPUT) | |
| console.log(blanksArray) | |
| // create a list of the values in the blanks fields | |
| let blanksValues = [] | |
| blanksArray.forEach(b => { | |
| blanksValues.push(b.value()) | |
| }) | |
| console.log(blanksValues) | |
| // Fill in blanks from our sample prompt and make new prompts list using our variable list 'blanksValues' | |
| blanksValues.forEach(b => { | |
| let p = PROMPT_INPUT.replace('[BLANK]', b) // replace the string segment with an item from the blanksValues | |
| promptArray.push(p) // add the new prompts to the prompt list | |
| }) | |
| console.log(promptArray) | |
| // call the function that runs the model for the task of your choice here | |
| // make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task | |
| // let outs = await textGenTask(PREPROMPT, PROMPT_INPUT, blanksValues) | |
| let outs = await textGenTask(PREPROMPT, promptArray) | |
| console.log(outs) | |
| // insert the model outputs into the paragraph | |
| await outText.html(outs, false) // false valuereplaces text, true appends text | |
| let outPic = await textImgTask(promptArray) | |
| console.log(outPic[1]) | |
| p5.createImage(outPic).parent('#outputDiv') | |
| } | |
| p5.draw = function(){ | |
| // | |
| } | |
| }); | |