sarahai's picture
Update app.py
eeb35b6 verified
raw
history blame
1.57 kB
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
model = tf.saved_model.load('saved_model/embryo_classifier')
IMG_SIZE = (300, 300)
def preprocess_image(image):
image = image.resize(IMG_SIZE, Image.LANCZOS)
inp_numpy = np.array(image)[None]
inp = tf.constant(inp_numpy, dtype='float32')
return inp
st.set_page_config(page_title="Embryo Quality Assessment", layout="wide")
st.title("Embryo Quality Assessment")
st.write("""
Upload an embryo image to classify its quality. The model will predict the quality of the embryo as either Low, Medium, or High.
""")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert('RGB')
resized_image = image.resize((150, 150))
st.image(resized_image, caption='Uploaded Image.', use_column_width=False)
st.write("Classifying...")
processed_image = preprocess_image(image)
class_scores = model(processed_image)[0].numpy()
predicted_class = class_scores.argmax()
classes = ['Low Quality', 'Medium Quality', 'High Quality']
st.write(f"**Prediction:** {classes[predicted_class]}")
st.write(f"**Confidence:** {np.max(class_scores) * 100:.2f}%")
st.write("**Confidence scores for all classes:**")
for i, score in enumerate(class_scores):
st.write(f"{classes[i]}: {score * 100:.2f}%")
st.markdown("""
---
*Created by [Sara](https://www.linkedin.com/in/sara-musaeva-944814189/)*
""")