Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from keras.models import load_model | |
| from PIL import Image, ImageOps | |
| import numpy as np | |
| model = load_model("keras_model.h5", compile=False) | |
| class_names = open("labels.txt", "r").readlines() | |
| def predict(image): | |
| data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
| # Preprocess | |
| image = ImageOps.fit(image, (224, 224), Image.LANCZOS) | |
| image_array = np.asarray(image) | |
| normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 | |
| data[0] = normalized_image_array | |
| # Make prediction | |
| prediction = model.predict(data) | |
| index = np.argmax(prediction) | |
| class_name = class_names[index].strip() | |
| confidence_score = prediction[0][index] | |
| return class_name, confidence_score | |
| st.title("Image Classification") | |
| uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file).convert("RGB") | |
| st.image(image, caption="Uploaded Image", use_column_width=True) | |
| class_name, confidence_score = predict(image) | |
| st.write("Class:", class_name) | |
| st.write("Confidence Score:", confidence_score) |