Spaces:
Sleeping
Sleeping
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import gradio as gr | |
# Load fine-tuned T5 models for different tasks | |
translation_model_en_bn = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_en_bn") | |
translation_tokenizer_en_bn = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_en_bn") | |
translation_model_bn_en = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_bn_en") | |
translation_tokenizer_bn_en = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_bn_en") | |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum") | |
summarization_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum") | |
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_banglaparaphrase") | |
paraphrase_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_banglaparaphrase") | |
# Function to perform machine translation | |
def translate_text(input_text): | |
inputs = translation_tokenizer_en_bn("translate: " + input_text, return_tensors="pt") | |
outputs = translation_model_en_bn.generate(**inputs) | |
translated_text = translation_tokenizer_en_bn.decode(outputs[0], skip_special_tokens=True) | |
return translated_text | |
# Function to perform summarization | |
def summarize_text(input_text): | |
inputs = summarization_tokenizer("summarize: " + input_text, return_tensors="pt") | |
outputs = summarization_model.generate(**inputs) | |
summarized_text = summarization_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return summarized_text | |
# Function to perform paraphrasing | |
def paraphrase_text(input_text): | |
inputs = paraphrase_tokenizer("paraphrase: " + input_text, return_tensors="pt") | |
outputs = paraphrase_model.generate(**inputs) | |
paraphrased_text = paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return paraphrased_text | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=translate_text, # Placeholder function; will be updated dynamically based on task selection | |
inputs=gr.Textbox("textarea", label="Input Text"), | |
outputs=gr.Textbox("auto", label="Output Text"), | |
live=True | |
) | |
# Function to update the Gradio interface based on task selection | |
def update_interface(change): | |
selected_task = task_selector.value | |
if selected_task == 'Translate': | |
iface.fn = translate_text | |
elif selected_task == 'Summarize': | |
iface.fn = summarize_text | |
elif selected_task == 'Paraphrase': | |
iface.fn = paraphrase_text | |
# Dropdown widget to select the task | |
task_selector = gr.Dropdown( | |
["Translate", "Summarize", "Paraphrase"], | |
default="Translate", | |
label="Select Task" | |
) | |
# Attach the update function to the dropdown widget | |
task_selector.observe(update_interface, names='value') | |
# Launch the Gradio app | |
iface.launch() | |