QuickAd / app.py
santoshtyss's picture
Update app.py
cdf6acc
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import StableDiffusionInpaintPipeline,StableDiffusionPipeline
from PIL import Image
import requests
import cv2
import torch
import matplotlib.pyplot as plt
import io
import requests
from huggingface_hub import login
import os
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
IPmodel_path = "runwayml/stable-diffusion-inpainting"
IPpipe = StableDiffusionInpaintPipeline.from_pretrained(
IPmodel_path,
revision="fp16",
torch_dtype=torch.float16,
use_auth_token= st.secrets["AUTH_TOKEN"]
).to(device)
trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
SDpipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", revision="fp16", torch_dtype=torch.float16, use_auth_token=st.secrets["AUTH_TOKEN"]).to(device)
def create_mask(image, prompt):
inputs = processor(text=[prompt], images=[image], padding="max_length", return_tensors="pt")
# predict
with torch.no_grad():
outputs = model(**inputs)
preds = outputs.logits
filename = f"mask.png"
plt.imsave(filename,torch.sigmoid(preds))
gray_image = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY)
(thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
# For debugging only:
# cv2.imwrite(filename,bw_image)
# fix color format
cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
mask = cv2.bitwise_not(bw_image)
cv2.imwrite(filename, mask)
return Image.open('mask.png')
def generate_image(image, product_name, target_name):
mask = create_mask(image, product_name)
image = image.resize((512, 512))
mask = mask.resize((512,512))
guidance_scale=8
#guidance_scale=16
num_samples = 4
prompt = target_name
generator = torch.Generator(device=device).manual_seed(22) # change the seed to get different results
im = IPpipe(
prompt=prompt,
image=image,
mask_image=mask,
guidance_scale=guidance_scale,
generator=generator,
).images
return im
def translate_sentence(article, source, target):
if target == 'eng_Latn':
return article
translator = pipeline('translation', model=trans_model, tokenizer=trans_tokenizer, src_lang=source, tgt_lang=target)
output = translator(article, max_length=400)
output = output[0]['translation_text']
return output
codes_as_string = '''Modern Standard Arabic arb_Arab
Danish dan_Latn
German deu_Latn
Greek ell_Grek
English eng_Latn
Estonian est_Latn
Finnish fin_Latn
French fra_Latn
Hebrew heb_Hebr
Hindi hin_Deva
Croatian hrv_Latn
Hungarian hun_Latn
Indonesian ind_Latn
Icelandic isl_Latn
Italian ita_Latn
Japanese jpn_Jpan
Korean kor_Hang
Luxembourgish ltz_Latn
Macedonian mkd_Cyrl
Maltese mlt_Latn
Dutch nld_Latn
Norwegian Bokmål nob_Latn
Polish pol_Latn
Portuguese por_Latn
Russian rus_Cyrl
Slovak slk_Latn
Slovenian slv_Latn
Spanish spa_Latn
Serbian srp_Cyrl
Swedish swe_Latn
Thai tha_Thai
Turkish tur_Latn
Ukrainian ukr_Cyrl
Vietnamese vie_Latn
Chinese (Simplified) zho_Hans'''
codes_as_string = codes_as_string.split('\n')
flores_codes = {}
for code in codes_as_string:
lang, lang_code = code.split('\t')
flores_codes[lang] = lang_code
import gradio as gr
import gc
gc.collect()
image_label = 'Please upload the image (optional)'
extract_label = 'Specify what need to be extracted from the above image'
prompt_label = 'Specify the description of image to be generated'
button_label = "Proceed"
output_label = "Generations"
shot_services = ['close-up', 'extreme-closeup', 'POV','medium', 'long']
shot_label = 'Choose the shot type'
style_services = ['polaroid', 'monochrome', 'long exposure','color splash', 'Tilt shift']
style_label = 'Choose the style type'
lighting_services = ['soft', 'ambivalent', 'ring','sun', 'cinematic']
lighting_label = 'Choose the lighting type'
context_services = ['indoor', 'outdoor', 'at night','in the park', 'in the beach','studio']
context_label = 'Choose the context'
lens_services = ['wide angle', 'telephoto', '24 mm','EF 70mm', 'Bokeh']
lens_label = 'Choose the lens type'
device_services = ['iphone', 'CCTV', 'Nikon ZFX','Canon', 'Gopro']
device_label = 'Choose the device type'
def change_lang(choice):
global lang_choice
lang_choice = choice
new_image_label = translate_sentence(image_label, "english", choice)
return [gr.update(visible=True, label=translate_sentence(image_label, flores_codes["English"],flores_codes[choice])),
gr.update(visible=True, label=translate_sentence(extract_label, flores_codes["English"],flores_codes[choice])),
gr.update(visible=True, label=translate_sentence(prompt_label, flores_codes["English"],flores_codes[choice])),
gr.update(visible=True, value=translate_sentence(button_label, flores_codes["English"],flores_codes[choice])),
gr.update(visible=True, label=translate_sentence(button_label, flores_codes["English"],flores_codes[choice])),
]
def add_to_prompt(prompt_text,shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio ):
if shot_radio != '':
prompt_text += ","+shot_radio
if style_radio != '':
prompt_text += ","+style_radio
if lighting_radio != '':
prompt_text += ","+lighting_radio
if context_radio != '':
prompt_text += ","+ context_radio
if lens_radio != '':
prompt_text += ","+ lens_radio
if device_radio != '':
prompt_text += ","+ device_radio
return prompt_text
def proceed_with_generation(input_file, extract_text, prompt_text, shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio):
if extract_text == "" or input_file == "":
translated_prompt = translate_sentence(prompt_text, flores_codes[lang_choice], flores_codes["English"])
translated_prompt = add_to_prompt(translated_prompt,shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio)
print(translated_prompt)
output = SDpipe(translated_prompt, height=512, width=512, num_images_per_prompt=4)
return output.images
elif extract_text != "" and input_file != "" and prompt_text !='':
translated_prompt = translate_sentence(prompt_text, flores_codes[lang_choice], flores_codes["English"])
translated_prompt = add_to_prompt(translated_prompt,shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio)
print(translated_prompt)
translated_extract = translate_sentence(extract_text, flores_codes[lang_choice], flores_codes["English"])
print(translated_extract)
output = generate_image(Image.fromarray(input_file), translated_extract, translated_prompt)
return output
else:
raise gr.Error("Please fill all details for guided image or atleast promt for free image rendition !")
with gr.Blocks() as demo:
lang_option = gr.Dropdown(list(flores_codes.keys()), default='English', label='Please Select your Language')
with gr.Row():
input_file = gr.Image(interactive = True, label=image_label, visible=False, shape=(512,512))
extract_text = gr.Textbox(label= extract_label, lines=1, interactive = True, visible = True)
prompt_text = gr.Textbox(label= prompt_label, lines=1, interactive = True, visible = True)
with gr.Accordion("Advanced Options", open=False):
shot_radio = gr.Radio(shot_services , label=shot_label, )
style_radio = gr.Radio(style_services , label=style_label)
lighting_radio = gr.Radio(lighting_services , label=lighting_label)
context_radio = gr.Radio(context_services , label=context_label)
lens_radio = gr.Radio(lens_services , label=lens_label)
device_radio = gr.Radio(device_services , label=device_label)
button = gr.Button(value = button_label , visible = False)
with gr.Row():
output_gallery = gr.Gallery(label = output_label, visible= False)
lang_option.change(fn=change_lang, inputs=lang_option, outputs=[input_file, extract_text, prompt_text, button, output_gallery])
button.click( proceed_with_generation, [input_file, extract_text, prompt_text, shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio], [output_gallery])
demo.launch(debug=True)