|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from classy import Class |
|
|
|
|
|
|
|
|
|
|
|
|
|
LambdaCDM = Class() |
|
|
|
LambdaCDM.set({'omega_b':0.0223828,'omega_cdm':0.1201075,'h':0.67810,'A_s':2.100549e-09,'n_s':0.9660499,'tau_reio':0.05430842}) |
|
LambdaCDM.set({'output':'tCl,pCl,lCl,mPk','lensing':'yes','P_k_max_1/Mpc':3.0}) |
|
|
|
LambdaCDM.compute() |
|
|
|
|
|
|
|
|
|
|
|
|
|
cls = LambdaCDM.lensed_cl(2500) |
|
|
|
cls.keys() |
|
|
|
|
|
|
|
|
|
|
|
ll = cls['ell'][2:] |
|
clTT = cls['tt'][2:] |
|
clEE = cls['ee'][2:] |
|
clPP = cls['pp'][2:] |
|
|
|
|
|
|
|
|
|
|
|
|
|
get_ipython().run_line_magic('matplotlib', 'inline') |
|
import matplotlib.pyplot as plt |
|
from math import pi |
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(1) |
|
plt.xscale('log');plt.yscale('linear');plt.xlim(2,2500) |
|
plt.xlabel(r'$\ell$') |
|
plt.ylabel(r'$[\ell(\ell+1)/2\pi] C_\ell^\mathrm{TT}$') |
|
plt.plot(ll,clTT*ll*(ll+1)/2./pi,'r-') |
|
plt.savefig('warmup_cltt.pdf') |
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
kk = np.logspace(-4,np.log10(3),1000) |
|
Pk = [] |
|
h = LambdaCDM.h() |
|
for k in kk: |
|
Pk.append(LambdaCDM.pk(k*h,0.)*h**3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(2) |
|
plt.xscale('log');plt.yscale('log');plt.xlim(kk[0],kk[-1]) |
|
plt.xlabel(r'$k \,\,\,\, [h/\mathrm{Mpc}]$') |
|
plt.ylabel(r'$P(k) \,\,\,\, [\mathrm{Mpc}/h]^3$') |
|
plt.plot(kk,Pk,'b-') |
|
plt.savefig('warmup_pk.pdf') |
|
|
|
|