CLAPP / class-data /thermo.py
Santiago Casas
add prompt and class data
bc65052
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
# import necessary modules
# uncomment to get plots displayed in notebook#%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from classy import Class
from scipy.optimize import fsolve
from scipy.interpolate import interp1d
import math
# In[ ]:
common_settings = {'output' : 'tCl',
# LambdaCDM parameters
'h':0.6781,
'omega_b':0.02238280,
'omega_cdm':0.1201075,
'A_s':2.100549e-09,
'n_s':0.9660499,
'tau_reio':0.05430842,
'thermodynamics_verbose':1
}
##############
#
# call CLASS
#
###############
M = Class()
M.set(common_settings)
M.compute()
derived = M.get_current_derived_parameters(['tau_rec','conformal_age','conf_time_reio'])
thermo = M.get_thermodynamics()
print (thermo.keys())
# In[ ]:
tau = thermo['conf. time [Mpc]']
g = thermo['g [Mpc^-1]']
# to make the reionisation peak visible, rescale g by 100 for late times
g[:500] *= 100
#################
#
# start plotting
#
#################
#
plt.xlim([1.e2,derived['conformal_age']])
plt.xlabel(r'$\tau \,\,\, \mathrm{[Mpc]}$')
plt.ylabel(r'$\mathrm{visibility} \,\,\, g \,\,\, [\mathrm{Mpc}^{-1}]$')
plt.axvline(x=derived['tau_rec'],color='k')
plt.axvline(x=derived['conf_time_reio'],color='k')
#
plt.semilogx(tau,g,'r',label=r'$\psi$')
plt.savefig('thermo.pdf',bbox_inches='tight')