CapiPort / Notebooks /MAexp.py
sankhyikii's picture
pie chart
b859bf8
import pandas as pd
import numpy as np
import yfinance as yf
import streamlit as st
import plotly.graph_objects as go
import time
from utilities import checker
import datetime
with open(r"../style/style.css") as css:
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
st.markdown(
"<h1 style='text-align: center;'><u>CapiPort</u></h1>", unsafe_allow_html=True
)
st.markdown(
"<h5 style='text-align: center; color: gray;'>Your Portfolio Optimisation Tool</h5>",
unsafe_allow_html=True,
)
st.header(
"",
divider="rainbow",
)
color = "Quest"
st.markdown(
"<h1 style='text-align: center;'>πŸ” Quest for financial excellence begins with meticulous portfolio optimization</u></h1>",
unsafe_allow_html=True,
)
st.header(
"",
divider="rainbow",
)
list_df = pd.read_csv("../Data/Company List.csv")
company_name = list_df["Name"].to_list()
company_symbol = (list_df["Ticker"] + ".NS").to_list()
company_dict = dict()
company_symbol_dict = dict()
for CSymbol, CName in zip(company_symbol, company_name):
company_dict[CName] = CSymbol
for CSymbol, CName in zip(company_symbol, company_name):
company_symbol_dict[CSymbol] = CName
st.markdown(
"""
<style>
.big-font {
font-size:20px;
}
</style>""",
unsafe_allow_html=True,
)
st.markdown('<p class="big-font">Select Multiple Companies</p>', unsafe_allow_html=True)
com_sel_name = st.multiselect("", company_name, default=None)
com_sel_date = []
for i in com_sel_name:
d = st.date_input(
f"On which date did you invested in - {i}",
value= pd.Timestamp('2021-01-01'),
format="YYYY-MM-DD",
)
d = d - datetime.timedelta(days=3)
com_sel_date.append(d)
com_sel = [company_dict[i] for i in com_sel_name]
num_tick = len(com_sel)
if num_tick > 1:
com_data = pd.DataFrame()
for cname, cdate in zip(com_sel, com_sel_date):
stock_data_temp = yf.download(cname, start=cdate, end=pd.Timestamp.now().strftime('%Y-%m-%d'))['Low']
stock_data_temp.name = cname
com_data = pd.merge(com_data, stock_data_temp, how="outer", right_index=True, left_index=True)
for i in com_data.columns:
com_data.dropna(axis=1, how='all', inplace=True)
# com_data.dropna(inplace=True)
num_tick = len(com_data.columns)
# Dataframe of the selected companies
st.dataframe(com_data, use_container_width=True)
# make a function to calculate moving averages from the dataframe com_data, store those moving averages in dictionary for respective company
def moving_average(data, window):
ma = {}
for i in data.columns:
ma[i] = data[i].rolling(window=window).mean().values[2]
return ma
moving_avg = moving_average(com_data, 3)
MA_df = pd.DataFrame(moving_avg.items(), columns=['Company', 'Purchase Rate (MA)'])
# calculate percentage return till present date from the moving average price of the stock
def percentage_return(data, moving_avg):
pr = {}
for i in data.columns:
pr[i] = f'{round(((data[i].values[-1] - moving_avg[i]) / moving_avg[i]) * 100,2) }%'
return pr
# make percentage return a dataframe from dictionary
percentage_return = pd.DataFrame(percentage_return(com_data, moving_avg).items(), columns=['Company', 'Percentage Return'])
#merge MA_df and percentage_return on "Company" columns
MA_df = pd.merge(MA_df, percentage_return, on='Company')
st.markdown(
"<h5 style='text-align: center;'>Percent Returns & MA price</h5>",
unsafe_allow_html=True,
)
st.write("<p style='text-align: center;'>**rate of purchase is moving average(MA) of 3 (t+2) days</p>", unsafe_allow_html=True)
st.dataframe(MA_df,use_container_width=True)
if num_tick > 1:
com_sel_name_temp = []
for i in com_data.columns:
com_sel_name_temp.append(company_symbol_dict[i])
com_sel = com_data.columns.to_list()
## Log-Return of Company Dataset
log_return = np.log(1 + com_data.pct_change())
## Generate Random Weights
rand_weig = np.array(np.random.random(num_tick))
## Rebalancing Random Weights
rebal_weig = rand_weig / np.sum(rand_weig)
## Calculate the Expected Returns, Annualize it by * 252.0
exp_ret = np.sum((log_return.mean() * rebal_weig) * 252)
## Calculate the Expected Volatility, Annualize it by * 252.0
exp_vol = np.sqrt(np.dot(rebal_weig.T, np.dot(log_return.cov() * 252, rebal_weig)))
## Calculate the Sharpe Ratio.
sharpe_ratio = exp_ret / exp_vol
# Put the weights into a data frame to see them better.
weights_df = pd.DataFrame(
data={
"company_name": com_sel_name_temp,
"random_weights": rand_weig,
"rebalance_weights": rebal_weig,
}
)
st.divider()
st.markdown(
"<h5 style='text-align: center;'>Random Portfolio Weights</h5>",
unsafe_allow_html=True,
)
st.dataframe(weights_df, use_container_width=True)
# Do the same with the other metrics.
metrics_df = pd.DataFrame(
data={
"Expected Portfolio Returns": exp_ret,
"Expected Portfolio Volatility": exp_vol,
"Portfolio Sharpe Ratio": sharpe_ratio,
},
index=[0],
)
st.markdown(
"<h5 style='text-align: center;'>Random Weights Metrics</h5>",
unsafe_allow_html=True,
)
st.dataframe(metrics_df, use_container_width=True)
st.divider()