CapiPort / main.py
shyam gupta
Merge pull request #1 from bhanuprasanna527/shyam
6e5813f unverified
raw
history blame
9.52 kB
import pandas as pd
import numpy as np
import yfinance as yf
import streamlit as st
import plotly.graph_objects as go
import time
import sys
with open(r"style/style.css") as css:
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
st.markdown(
"<h1 style='text-align: center;'><u>CapiPort</u></h1>", unsafe_allow_html=True
)
st.markdown(
"<h5 style='text-align: center; color: gray;'>Your Portfolio Optimisation Tool</h5>",
unsafe_allow_html=True,
)
st.header(
"",
divider="rainbow",
)
color = "Quest"
st.markdown(
"<h1 style='text-align: center;'>🔍 Quest for financial excellence begins with meticulous portfolio optimization</u></h1>",
unsafe_allow_html=True,
)
st.header(
"",
divider="rainbow",
)
list_df = pd.read_csv("Data/Company List.csv")
company_name = list_df["Name"].to_list()
company_symbol = (list_df["Ticker"] + ".NS").to_list()
company_dict = dict()
company_symbol_dict = dict()
for CSymbol, CName in zip(company_symbol, company_name):
company_dict[CName] = CSymbol
for CSymbol, CName in zip(company_symbol, company_name):
company_symbol_dict[CSymbol] = CName
st.markdown(
"""
<style>
.big-font {
font-size:20px;
}
</style>""",
unsafe_allow_html=True,
)
st.markdown('<p class="big-font">Select Multiple Companies</p>', unsafe_allow_html=True)
com_sel_name = st.multiselect("", company_name, default=None)
com_sel_date = []
for i in com_sel_name:
d = st.date_input(
f"Select your vacation for next year - {i}",
value= pd.Timestamp('2021-01-01'),
format="YYYY-MM-DD",
)
com_sel_date.append(d)
com_sel = [company_dict[i] for i in com_sel_name]
num_tick = len(com_sel)
if num_tick > 1:
com_data = pd.DataFrame()
for cname, cdate in zip(com_sel, com_sel_date):
stock_data_temp = yf.download(cname, start=cdate, end=pd.Timestamp.now().strftime('%Y-%m-%d'))['Adj Close']
stock_data_temp.name = cname
com_data = pd.merge(com_data, stock_data_temp, how="outer", right_index=True, left_index=True)
for i in com_data.columns:
com_data.dropna(axis=1, how='all', inplace=True)
# com_data.dropna(inplace=True)
num_tick = len(com_data.columns)
if num_tick > 1:
com_sel_name_temp = []
for i in com_data.columns:
com_sel_name_temp.append(company_symbol_dict[i])
com_sel = com_data.columns.to_list()
st.dataframe(com_data, use_container_width=True)
## Log-Return of Company Dataset
log_return = np.log(1 + com_data.pct_change())
## Generate Random Weights
rand_weig = np.array(np.random.random(num_tick))
## Rebalancing Random Weights
rebal_weig = rand_weig / np.sum(rand_weig)
## Calculate the Expected Returns, Annualize it by * 252.0
exp_ret = np.sum((log_return.mean() * rebal_weig) * 252)
## Calculate the Expected Volatility, Annualize it by * 252.0
exp_vol = np.sqrt(np.dot(rebal_weig.T, np.dot(log_return.cov() * 252, rebal_weig)))
## Calculate the Sharpe Ratio.
sharpe_ratio = exp_ret / exp_vol
# Put the weights into a data frame to see them better.
weights_df = pd.DataFrame(
data={
"company_name": com_sel_name_temp,
"random_weights": rand_weig,
"rebalance_weights": rebal_weig,
}
)
st.divider()
st.markdown(
"<h5 style='text-align: center;'>Random Portfolio Weights</h5>",
unsafe_allow_html=True,
)
st.dataframe(weights_df, use_container_width=True)
# Do the same with the other metrics.
metrics_df = pd.DataFrame(
data={
"Expected Portfolio Returns": exp_ret,
"Expected Portfolio Volatility": exp_vol,
"Portfolio Sharpe Ratio": sharpe_ratio,
},
index=[0],
)
st.markdown(
"<h5 style='text-align: center;'>Random Weights Metrics</h5>",
unsafe_allow_html=True,
)
st.dataframe(metrics_df, use_container_width=True)
st.divider()
## Let's get started with Monte Carlo Simulations
## How many times should we run Monte Carlo
num_of_port = 8000
## Create an Array to store the weights as they are generated
all_weights = np.zeros((num_of_port, num_tick))
## Create an Array to store the returns as they are generated
ret_arr = np.zeros(num_of_port)
## Create an Array to store the volatilities as they are generated
vol_arr = np.zeros(num_of_port)
## Create an Array to store the Sharpe Ratios as they are generated
sharpe_arr = np.zeros(num_of_port)
## Track Progress with a Bar
progress_text = "Operation in progress. Please wait."
my_bar = st.progress(0, text=progress_text)
## Let's start the Monte Carlo Simulation
for ind in range(num_of_port): # Corrected the range to iterate from 0 to num_of_port
time.sleep(0.001)
## Let's first Calculate the Weights
weig = np.array(np.random.random(num_tick))
weig = weig / np.sum(weig)
## Append the Weights to Weigths array
all_weights[ind, :] = weig
## Calculate and Append the Expected Log Returns to Returns Array
ret_arr[ind] = np.sum((log_return.mean() * weig) * 247)
## Calculate and Append the Volatility to the Volatitlity Array
vol_arr[ind] = np.sqrt(np.dot(weig.T, np.dot(log_return.cov() * 247, weig)))
## Calculate and Append the Sharpe Ratio to Sharpe Ratio Array
sharpe_arr[ind] = ret_arr[ind] / vol_arr[ind]
if ind % 100 == 0:
my_bar.progress((ind + 1) / num_of_port, text=progress_text)
# clear progress bar
my_bar.empty()
## Let's create a Data Frame with Weights, Returns, Volatitlity, and the Sharpe Ratio
sim_data = [ret_arr, vol_arr, sharpe_arr, all_weights]
## Create a Data Frame using above, then Transpose it
sim_df = pd.DataFrame(data=sim_data).T
## Give the columns in Simulation Data Proper Names
sim_df.columns = ["Returns", "Volatility", "Sharpe Ratio", "Portfolio Weights"]
## Make sure the Data Types are correct in the Data Frame
sim_df = sim_df.infer_objects()
# Print out the results.
st.write("\n\n")
st.markdown(
"<h4 style='text-align: center;'>Simulation Results</h4>",
unsafe_allow_html=True,
)
st.dataframe(sim_df.head(), use_container_width=True)
# Return the Max Sharpe Ratio from the run.
max_sharpe_ratio = sim_df.loc[sim_df["Sharpe Ratio"].idxmax()]
# Return the Min Volatility from the run.
min_volatility = sim_df.loc[sim_df["Volatility"].idxmin()]
max_sharpe_weights_df = pd.DataFrame(
data={
"company_name": com_sel_name_temp,
"random_weights": max_sharpe_ratio["Portfolio Weights"],
}
)
st.markdown(
"<h5 style='text-align: center;'>Portfolio with Max Sharpe Ratio</h5>",
unsafe_allow_html=True,
)
st.dataframe(max_sharpe_ratio, use_container_width=True)
st.dataframe(max_sharpe_weights_df, use_container_width=True)
min_volatility_weights_df = pd.DataFrame(
data={
"company_name": com_sel_name_temp,
"random_weights": min_volatility["Portfolio Weights"],
}
)
st.markdown(
"<h5 style='text-align: center;'>Portfolio with Min Volatility</h5>",
unsafe_allow_html=True,
)
st.dataframe(min_volatility, use_container_width=True)
st.dataframe(min_volatility_weights_df, use_container_width=True)
st.divider()
st.markdown("<h1 style='text-align: center;'>Plotting</h1>", unsafe_allow_html=True)
fig = go.Figure(
data=go.Scatter(
x=sim_df["Volatility"],
y=sim_df["Returns"],
mode="markers",
marker=dict(color=sim_df["Sharpe Ratio"], colorscale="RdYlBu", size=10),
)
)
# Add color bar
fig.update_layout(coloraxis_colorbar=dict(title="Sharpe Ratio"))
# Add title and axis labels
fig.update_layout(
title="Portfolio Returns Vs. Risk",
xaxis=dict(title="Standard Deviation / Volatility"),
yaxis=dict(title="Returns"),
)
# Plot the Max Sharpe Ratio, using a `Red Star`.
fig.add_trace(
go.Scatter(
x=[max_sharpe_ratio[1]],
y=[max_sharpe_ratio[0]],
mode="markers",
marker=dict(color="red", symbol="star", size=20),
name="Max Sharpe Ratio",
)
)
# Plot the Min Volatility, using a `Blue Star`.
fig.add_trace(
go.Scatter(
x=[min_volatility[1]],
y=[min_volatility[0]],
mode="markers",
marker=dict(color="blue", symbol="star", size=20),
name="Min Volatility",
)
)
st.plotly_chart(fig, use_container_width=True)