Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
from faster_whisper import WhisperModel | |
import tempfile | |
import os | |
MODEL_NAME = "medium" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# pipe = pipeline( | |
# task="automatic-speech-recognition", | |
# model=MODEL_NAME, | |
# chunk_length_s=30, | |
# device=device, | |
# ) | |
model = MBartForConditionalGeneration.from_pretrained("sanjitaa/mbart-many-to-many") | |
tokenizer = MBart50TokenizerFast.from_pretrained("sanjitaa/mbart-many-to-many") | |
def translate(inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
#text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
ts_model = WhisperModel(MODEL_NAME, device = device, compute_type = "int8") | |
segments, _ = ts_model.transcribe(inputs, task = "translate") | |
lst = '' | |
for segment in segments: | |
lst = lst + segment.text | |
encoded_text = tokenizer(lst, return_tensors="pt") | |
tokenizer.src_lang = "en_XX" | |
generated_tokens = model.generate( | |
**encoded_text, | |
forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"] | |
) | |
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
return result | |
demo = gr.Blocks() | |
# mf_transcribe = gr.Interface( | |
# fn=translate, | |
# inputs=[ | |
# gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
# gr.inputs.Radio(["translate"], label="Task", default="translate"), | |
# ], | |
# outputs="text", | |
# layout="horizontal", | |
# theme="huggingface", | |
# title="Whisper Medium: Transcribe Audio", | |
# description=( | |
# "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
# f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
# " of arbitrary length." | |
# ), | |
# allow_flagging="never", | |
# ) | |
file_transcribe = gr.Interface( | |
fn=translate, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"), | |
gr.inputs.Radio(["translate"], label="Task", default="transcribe"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Medium: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe], ["Audio file"]) | |
demo.launch(enable_queue=True) | |