Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
from dataclasses import asdict, dataclass | |
from pathlib import Path | |
from typing import Any, Dict, List, Optional, Type, TypeVar, Union | |
from huggingface_hub import ModelHubMixin, hf_hub_download | |
# Generic variable that is either ModelHubMixin or a subclass thereof | |
T = TypeVar("T", bound="ModelHubMixin") | |
TEMPLATE_FILENAME = "dialogue_template.json" | |
IGNORE_INDEX = -100 | |
class DialogueTemplate(ModelHubMixin): | |
"""Converts all turns of a dialogue between a user and assistant to a standardized format. | |
Adapted from OpenAI's ChatML (https://github.com/openai/openai-python/blob/main/chatml.md) and Vicuna (https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py) | |
""" | |
system: str | |
messages: List[Dict[str, str]] = None | |
system_token: str = "<|system|>" | |
user_token: str = "<|user|>" | |
assistant_token: str = "<|assistant|>" | |
end_token: str = "<|end|>" | |
def get_training_prompt(self) -> str: | |
prompt = self.system_token + "\n" + self.system + self.end_token + "\n" | |
if self.messages is None: | |
raise ValueError("Dialogue template must have at least one message.") | |
for message in self.messages: | |
if message["role"] == "user": | |
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n" | |
else: | |
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n" | |
return prompt | |
def get_inference_prompt(self) -> str: | |
prompt = self.system_token + "\n" + self.system + self.end_token + "\n" | |
if self.messages is None: | |
raise ValueError("Dialogue template must have at least one message.") | |
for message in self.messages: | |
if message["role"] == "user": | |
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n" | |
else: | |
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n" | |
prompt += self.assistant_token | |
return prompt | |
def get_dialogue(self): | |
"""Helper function to format the messages as an easy-to-read dialogue.""" | |
prompt = "" | |
if self.messages is None: | |
raise ValueError("Dialogue template must have at least one message.") | |
for message in self.messages: | |
if message["role"] == "user": | |
prompt += "\n\nHuman: " + message["content"] | |
else: | |
prompt += "\n\nAssistant: " + message["content"] | |
return prompt | |
def get_special_tokens(self) -> List[str]: | |
return [self.system_token, self.user_token, self.assistant_token, self.end_token] | |
def copy(self): | |
return DialogueTemplate( | |
system=self.system, | |
messages=self.messages, | |
system_token=self.system_token, | |
user_token=self.user_token, | |
assistant_token=self.assistant_token, | |
end_token=self.end_token, | |
) | |
def to_dict(self) -> Dict[str, Any]: | |
return {k: v for k, v in asdict(self).items()} | |
def from_dict(cls, data): | |
return DialogueTemplate( | |
system=data["system"] if "system" in data else "", | |
messages=data["messages"] if "messages" in data else None, | |
system_token=data["system_token"] if "system_token" in data else "<|system|>", | |
user_token=data["user_token"] if "user_token" in data else "<|user|>", | |
assistant_token=data["assistant_token"] if "assistant_token" in data else "<|assistant|>", | |
end_token=data["end_token"] if "end_token" in data else "<|end|>", | |
) | |
def _save_pretrained(self, save_directory: Union[str, Path]) -> None: | |
save_directory = Path(save_directory) | |
save_directory.mkdir(exist_ok=True) | |
with open(save_directory / "dialogue_template.json", "w") as f: | |
json.dump(self.to_dict(), f, indent=2) | |
def _from_pretrained( | |
cls: Type[T], | |
*, | |
model_id: str, | |
revision: Optional[str], | |
cache_dir: Optional[Union[str, Path]], | |
force_download: bool, | |
proxies: Optional[Dict], | |
resume_download: bool, | |
local_files_only: bool, | |
token: Optional[Union[str, bool]], | |
**model_kwargs, | |
) -> T: | |
"""Loads the dialogue template from a local directory or the Huggingface Hub. | |
Args: | |
model_id (`str`): | |
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`). | |
revision (`str`, *optional*): | |
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the | |
latest commit on `main` branch. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding | |
the existing cache. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`). | |
token (`str` or `bool`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. By default, it will use the token | |
cached when running `huggingface-cli login`. | |
cache_dir (`str`, `Path`, *optional*): | |
Path to the folder where cached files are stored. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
If `True`, avoid downloading the file and return the path to the local cached file if it exists. | |
model_kwargs: | |
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method. | |
""" | |
if os.path.isdir(model_id): # Can either be a local directory | |
print("Loading dialogue template from local directory") | |
template_file = os.path.join(model_id, TEMPLATE_FILENAME) | |
else: # Or a template on the Hub | |
template_file = hf_hub_download( # Download from the hub, passing same input args | |
repo_id=model_id, | |
filename=TEMPLATE_FILENAME, | |
revision=revision, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
token=token, | |
local_files_only=local_files_only, | |
) | |
# Load template | |
with open(template_file, "r") as f: | |
data = json.load(f) | |
return cls.from_dict(data=data) | |
# A shortened version of the system message in Anthropic's HHH prompt: https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt | |
default_template = DialogueTemplate( | |
system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.", | |
) | |
# OpenAI and OpenAssistant train on few to no system messages. | |
# TODO: consider defining this as the `default` template | |
no_system_template = DialogueTemplate( | |
system="", | |
) | |
alpaca_template = DialogueTemplate( | |
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.", | |
user_token="### Instruction:", | |
assistant_token="### Response:", | |
) | |
SUPPORTED_DIALOGUE_TEMPLATES = { | |
"default": default_template, | |
"no_system": no_system_template, | |
"alpaca": alpaca_template, | |
} | |
def get_dialogue_template(template: str) -> DialogueTemplate: | |
if template not in SUPPORTED_DIALOGUE_TEMPLATES.keys(): | |
raise ValueError(f"Template {template} is not supported!") | |
return SUPPORTED_DIALOGUE_TEMPLATES[template].copy() | |
def prepare_dialogue(example, dialogue_template, is_train=True): | |
"""Format example to single- or multi-turn dialogue.""" | |
# TODO: make this simpler by just ensuring every dataset has a messages column | |
if "messages" in example.keys() and example["messages"] is not None: | |
dialogue_template.messages = example["messages"] | |
elif all(k in example.keys() for k in ("prompt", "completion")): | |
# Construct single-turn dialogue from prompt and completion | |
dialogue_template.messages = [ | |
{"role": "user", "content": example["prompt"]}, | |
{"role": "assistant", "content": example["completion"]}, | |
] | |
elif "prompt" in example.keys(): | |
# Construct single-turn dialogue from prompt (inference only) | |
dialogue_template.messages = [ | |
{"role": "user", "content": example["prompt"]}, | |
] | |
else: | |
raise ValueError( | |
f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}" | |
) | |
if is_train: | |
example["text"] = dialogue_template.get_training_prompt() | |
else: | |
example["text"] = dialogue_template.get_inference_prompt() | |
return example | |
def mask_user_labels(tokenizer, dialogue_template, labels): | |
"""Masks the user turns of a dialogue from the loss""" | |
user_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.user_token) | |
assistant_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.assistant_token) | |
for idx, label_id in enumerate(labels): | |
if label_id == user_token_id: | |
current_idx = idx | |
while labels[current_idx] != assistant_token_id and current_idx < len(labels): | |
labels[current_idx] = IGNORE_INDEX | |
current_idx += 1 | |