Spaces:
Runtime error
Runtime error
Commit
·
78893e9
0
Parent(s):
Duplicate from abhishek/StableSAM
Browse filesCo-authored-by: Abhishek Thakur <abhishek@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +13 -0
- __pycache__/app.cpython-38.pyc +0 -0
- __pycache__/controlnet_inpaint.cpython-38.pyc +0 -0
- app.py +168 -0
- controlnet_inpaint.py +1077 -0
- requirements.txt +12 -0
- sam_vit_h_4b8939.pth +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: StableSAM
|
| 3 |
+
emoji: 🍀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.25.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
duplicated_from: abhishek/StableSAM
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/app.cpython-38.pyc
ADDED
|
Binary file (4.26 kB). View file
|
|
|
__pycache__/controlnet_inpaint.cpython-38.pyc
ADDED
|
Binary file (35.9 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionInpaintPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
|
| 7 |
+
from diffusers import ControlNetModel
|
| 8 |
+
from diffusers import UniPCMultistepScheduler
|
| 9 |
+
from controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
| 10 |
+
import colorsys
|
| 11 |
+
|
| 12 |
+
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
| 13 |
+
model_type = "vit_h"
|
| 14 |
+
device = "cpu"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
| 18 |
+
sam.to(device=device)
|
| 19 |
+
predictor = SamPredictor(sam)
|
| 20 |
+
mask_generator = SamAutomaticMaskGenerator(sam)
|
| 21 |
+
|
| 22 |
+
# pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 23 |
+
# "stabilityai/stable-diffusion-2-inpainting",
|
| 24 |
+
# torch_dtype=torch.float16,
|
| 25 |
+
# )
|
| 26 |
+
# pipe = pipe.to("cuda")
|
| 27 |
+
|
| 28 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 29 |
+
"lllyasviel/sd-controlnet-seg",
|
| 30 |
+
torch_dtype=torch.float16,
|
| 31 |
+
)
|
| 32 |
+
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 33 |
+
"runwayml/stable-diffusion-inpainting",
|
| 34 |
+
controlnet=controlnet,
|
| 35 |
+
torch_dtype=torch.float16,
|
| 36 |
+
)
|
| 37 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 38 |
+
#pipe.enable_model_cpu_offload()
|
| 39 |
+
#pipe.enable_xformers_memory_efficient_attention()
|
| 40 |
+
pipe = pipe.to(device)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
with gr.Blocks() as demo:
|
| 44 |
+
gr.Markdown("# StableSAM: Stable Diffusion + Segment Anything Model")
|
| 45 |
+
gr.Markdown(
|
| 46 |
+
"""
|
| 47 |
+
To try the demo, upload an image and select object(s) you want to inpaint.
|
| 48 |
+
Write a prompt & a negative prompt to control the inpainting.
|
| 49 |
+
Click on the "Submit" button to inpaint the selected object(s).
|
| 50 |
+
Check "Background" to inpaint the background instead of the selected object(s).
|
| 51 |
+
|
| 52 |
+
If the demo is slow, clone the space to your own HF account and run on a GPU.
|
| 53 |
+
"""
|
| 54 |
+
)
|
| 55 |
+
selected_pixels = gr.State([])
|
| 56 |
+
with gr.Row():
|
| 57 |
+
input_img = gr.Image(label="Input")
|
| 58 |
+
mask_img = gr.Image(label="Mask", interactive=False)
|
| 59 |
+
seg_img = gr.Image(label="Segmentation", interactive=False)
|
| 60 |
+
output_img = gr.Image(label="Output", interactive=False)
|
| 61 |
+
|
| 62 |
+
with gr.Row():
|
| 63 |
+
prompt_text = gr.Textbox(lines=1, label="Prompt")
|
| 64 |
+
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")
|
| 65 |
+
is_background = gr.Checkbox(label="Background")
|
| 66 |
+
|
| 67 |
+
with gr.Row():
|
| 68 |
+
submit = gr.Button("Submit")
|
| 69 |
+
clear = gr.Button("Clear")
|
| 70 |
+
|
| 71 |
+
def generate_mask(image, bg, sel_pix, evt: gr.SelectData):
|
| 72 |
+
sel_pix.append(evt.index)
|
| 73 |
+
predictor.set_image(image)
|
| 74 |
+
input_point = np.array(sel_pix)
|
| 75 |
+
input_label = np.ones(input_point.shape[0])
|
| 76 |
+
mask, _, _ = predictor.predict(
|
| 77 |
+
point_coords=input_point,
|
| 78 |
+
point_labels=input_label,
|
| 79 |
+
multimask_output=False,
|
| 80 |
+
)
|
| 81 |
+
# clear torch cache
|
| 82 |
+
torch.cuda.empty_cache()
|
| 83 |
+
if bg:
|
| 84 |
+
mask = np.logical_not(mask)
|
| 85 |
+
mask = Image.fromarray(mask[0, :, :])
|
| 86 |
+
segs = mask_generator.generate(image)
|
| 87 |
+
boolean_masks = [s["segmentation"] for s in segs]
|
| 88 |
+
finseg = np.zeros((boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8)
|
| 89 |
+
# Loop over the boolean masks and assign a unique color to each class
|
| 90 |
+
for class_id, boolean_mask in enumerate(boolean_masks):
|
| 91 |
+
hue = class_id * 1.0 / len(boolean_masks)
|
| 92 |
+
rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1))
|
| 93 |
+
rgb_mask = np.zeros((boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8)
|
| 94 |
+
rgb_mask[:, :, 0] = boolean_mask * rgb[0]
|
| 95 |
+
rgb_mask[:, :, 1] = boolean_mask * rgb[1]
|
| 96 |
+
rgb_mask[:, :, 2] = boolean_mask * rgb[2]
|
| 97 |
+
finseg += rgb_mask
|
| 98 |
+
|
| 99 |
+
torch.cuda.empty_cache()
|
| 100 |
+
|
| 101 |
+
return mask, finseg
|
| 102 |
+
|
| 103 |
+
def inpaint(image, mask, seg_img, prompt, negative_prompt):
|
| 104 |
+
image = Image.fromarray(image)
|
| 105 |
+
mask = Image.fromarray(mask)
|
| 106 |
+
seg_img = Image.fromarray(seg_img)
|
| 107 |
+
|
| 108 |
+
image = image.resize((512, 512))
|
| 109 |
+
mask = mask.resize((512, 512))
|
| 110 |
+
seg_img = seg_img.resize((512, 512))
|
| 111 |
+
|
| 112 |
+
output = pipe(
|
| 113 |
+
prompt,
|
| 114 |
+
image,
|
| 115 |
+
mask,
|
| 116 |
+
seg_img,
|
| 117 |
+
negative_prompt=negative_prompt,
|
| 118 |
+
num_inference_steps=20,
|
| 119 |
+
).images[0]
|
| 120 |
+
torch.cuda.empty_cache()
|
| 121 |
+
return output
|
| 122 |
+
|
| 123 |
+
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg):
|
| 124 |
+
sel_pix = []
|
| 125 |
+
img = None
|
| 126 |
+
mask = None
|
| 127 |
+
seg = None
|
| 128 |
+
out = None
|
| 129 |
+
prompt = ""
|
| 130 |
+
neg_prompt = ""
|
| 131 |
+
bg = False
|
| 132 |
+
return img, mask, seg, out, prompt, neg_prompt, bg
|
| 133 |
+
|
| 134 |
+
input_img.select(
|
| 135 |
+
generate_mask,
|
| 136 |
+
[input_img, is_background, selected_pixels],
|
| 137 |
+
[mask_img, seg_img],
|
| 138 |
+
)
|
| 139 |
+
submit.click(
|
| 140 |
+
inpaint,
|
| 141 |
+
inputs=[input_img, mask_img, seg_img, prompt_text, negative_prompt_text],
|
| 142 |
+
outputs=[output_img],
|
| 143 |
+
)
|
| 144 |
+
clear.click(
|
| 145 |
+
_clear,
|
| 146 |
+
inputs=[
|
| 147 |
+
selected_pixels,
|
| 148 |
+
input_img,
|
| 149 |
+
mask_img,
|
| 150 |
+
seg_img,
|
| 151 |
+
output_img,
|
| 152 |
+
prompt_text,
|
| 153 |
+
negative_prompt_text,
|
| 154 |
+
is_background,
|
| 155 |
+
],
|
| 156 |
+
outputs=[
|
| 157 |
+
input_img,
|
| 158 |
+
mask_img,
|
| 159 |
+
seg_img,
|
| 160 |
+
output_img,
|
| 161 |
+
prompt_text,
|
| 162 |
+
negative_prompt_text,
|
| 163 |
+
is_background,
|
| 164 |
+
],
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
demo.launch()
|
controlnet_inpaint.py
ADDED
|
@@ -0,0 +1,1077 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# All the code in this file has been taken from: https://github.com/huggingface/diffusers/blob/main/examples/community/stable_diffusion_controlnet_inpaint.py
|
| 2 |
+
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
| 3 |
+
|
| 4 |
+
import inspect
|
| 5 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import PIL.Image
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 12 |
+
|
| 13 |
+
from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging
|
| 14 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
| 15 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 16 |
+
from diffusers.utils import (
|
| 17 |
+
PIL_INTERPOLATION,
|
| 18 |
+
is_accelerate_available,
|
| 19 |
+
is_accelerate_version,
|
| 20 |
+
randn_tensor,
|
| 21 |
+
replace_example_docstring,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 26 |
+
|
| 27 |
+
EXAMPLE_DOC_STRING = """
|
| 28 |
+
Examples:
|
| 29 |
+
```py
|
| 30 |
+
>>> import numpy as np
|
| 31 |
+
>>> import torch
|
| 32 |
+
>>> from PIL import Image
|
| 33 |
+
>>> from stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
| 34 |
+
|
| 35 |
+
>>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 36 |
+
>>> from diffusers import ControlNetModel, UniPCMultistepScheduler
|
| 37 |
+
>>> from diffusers.utils import load_image
|
| 38 |
+
|
| 39 |
+
>>> def ade_palette():
|
| 40 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 41 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 42 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 43 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 44 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 45 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 46 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 47 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 48 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 49 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 50 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 51 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 52 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 53 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 54 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 55 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 56 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 57 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 58 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 59 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 60 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 61 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 62 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 63 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 64 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 65 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 66 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 67 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 68 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 69 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 70 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 71 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 72 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 73 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 74 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 75 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 76 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 77 |
+
[102, 255, 0], [92, 0, 255]]
|
| 78 |
+
|
| 79 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 80 |
+
>>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 81 |
+
|
| 82 |
+
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
|
| 83 |
+
|
| 84 |
+
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 85 |
+
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 89 |
+
>>> pipe.enable_xformers_memory_efficient_attention()
|
| 90 |
+
>>> pipe.enable_model_cpu_offload()
|
| 91 |
+
|
| 92 |
+
>>> def image_to_seg(image):
|
| 93 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
outputs = image_segmentor(pixel_values)
|
| 96 |
+
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 97 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 98 |
+
palette = np.array(ade_palette())
|
| 99 |
+
for label, color in enumerate(palette):
|
| 100 |
+
color_seg[seg == label, :] = color
|
| 101 |
+
color_seg = color_seg.astype(np.uint8)
|
| 102 |
+
seg_image = Image.fromarray(color_seg)
|
| 103 |
+
return seg_image
|
| 104 |
+
|
| 105 |
+
>>> image = load_image(
|
| 106 |
+
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
>>> mask_image = load_image(
|
| 110 |
+
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
>>> controlnet_conditioning_image = image_to_seg(image)
|
| 114 |
+
|
| 115 |
+
>>> image = pipe(
|
| 116 |
+
"Face of a yellow cat, high resolution, sitting on a park bench",
|
| 117 |
+
image,
|
| 118 |
+
mask_image,
|
| 119 |
+
controlnet_conditioning_image,
|
| 120 |
+
num_inference_steps=20,
|
| 121 |
+
).images[0]
|
| 122 |
+
|
| 123 |
+
>>> image.save("out.png")
|
| 124 |
+
```
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def prepare_image(image):
|
| 129 |
+
if isinstance(image, torch.Tensor):
|
| 130 |
+
# Batch single image
|
| 131 |
+
if image.ndim == 3:
|
| 132 |
+
image = image.unsqueeze(0)
|
| 133 |
+
|
| 134 |
+
image = image.to(dtype=torch.float32)
|
| 135 |
+
else:
|
| 136 |
+
# preprocess image
|
| 137 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
| 138 |
+
image = [image]
|
| 139 |
+
|
| 140 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
| 141 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
| 142 |
+
image = np.concatenate(image, axis=0)
|
| 143 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
| 144 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
| 145 |
+
|
| 146 |
+
image = image.transpose(0, 3, 1, 2)
|
| 147 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
| 148 |
+
|
| 149 |
+
return image
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def prepare_mask_image(mask_image):
|
| 153 |
+
if isinstance(mask_image, torch.Tensor):
|
| 154 |
+
if mask_image.ndim == 2:
|
| 155 |
+
# Batch and add channel dim for single mask
|
| 156 |
+
mask_image = mask_image.unsqueeze(0).unsqueeze(0)
|
| 157 |
+
elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
|
| 158 |
+
# Single mask, the 0'th dimension is considered to be
|
| 159 |
+
# the existing batch size of 1
|
| 160 |
+
mask_image = mask_image.unsqueeze(0)
|
| 161 |
+
elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
|
| 162 |
+
# Batch of mask, the 0'th dimension is considered to be
|
| 163 |
+
# the batching dimension
|
| 164 |
+
mask_image = mask_image.unsqueeze(1)
|
| 165 |
+
|
| 166 |
+
# Binarize mask
|
| 167 |
+
mask_image[mask_image < 0.5] = 0
|
| 168 |
+
mask_image[mask_image >= 0.5] = 1
|
| 169 |
+
else:
|
| 170 |
+
# preprocess mask
|
| 171 |
+
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
|
| 172 |
+
mask_image = [mask_image]
|
| 173 |
+
|
| 174 |
+
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
|
| 175 |
+
mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0)
|
| 176 |
+
mask_image = mask_image.astype(np.float32) / 255.0
|
| 177 |
+
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
|
| 178 |
+
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)
|
| 179 |
+
|
| 180 |
+
mask_image[mask_image < 0.5] = 0
|
| 181 |
+
mask_image[mask_image >= 0.5] = 1
|
| 182 |
+
mask_image = torch.from_numpy(mask_image)
|
| 183 |
+
|
| 184 |
+
return mask_image
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def prepare_controlnet_conditioning_image(
|
| 188 |
+
controlnet_conditioning_image, width, height, batch_size, num_images_per_prompt, device, dtype
|
| 189 |
+
):
|
| 190 |
+
if not isinstance(controlnet_conditioning_image, torch.Tensor):
|
| 191 |
+
if isinstance(controlnet_conditioning_image, PIL.Image.Image):
|
| 192 |
+
controlnet_conditioning_image = [controlnet_conditioning_image]
|
| 193 |
+
|
| 194 |
+
if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
|
| 195 |
+
controlnet_conditioning_image = [
|
| 196 |
+
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
|
| 197 |
+
for i in controlnet_conditioning_image
|
| 198 |
+
]
|
| 199 |
+
controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
|
| 200 |
+
controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
|
| 201 |
+
controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
|
| 202 |
+
controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
|
| 203 |
+
elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
|
| 204 |
+
controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)
|
| 205 |
+
|
| 206 |
+
image_batch_size = controlnet_conditioning_image.shape[0]
|
| 207 |
+
|
| 208 |
+
if image_batch_size == 1:
|
| 209 |
+
repeat_by = batch_size
|
| 210 |
+
else:
|
| 211 |
+
# image batch size is the same as prompt batch size
|
| 212 |
+
repeat_by = num_images_per_prompt
|
| 213 |
+
|
| 214 |
+
controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)
|
| 215 |
+
|
| 216 |
+
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)
|
| 217 |
+
|
| 218 |
+
return controlnet_conditioning_image
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
|
| 222 |
+
"""
|
| 223 |
+
Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
| 224 |
+
"""
|
| 225 |
+
|
| 226 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
| 227 |
+
|
| 228 |
+
def __init__(
|
| 229 |
+
self,
|
| 230 |
+
vae: AutoencoderKL,
|
| 231 |
+
text_encoder: CLIPTextModel,
|
| 232 |
+
tokenizer: CLIPTokenizer,
|
| 233 |
+
unet: UNet2DConditionModel,
|
| 234 |
+
controlnet: ControlNetModel,
|
| 235 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 236 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 237 |
+
feature_extractor: CLIPImageProcessor,
|
| 238 |
+
requires_safety_checker: bool = True,
|
| 239 |
+
):
|
| 240 |
+
super().__init__()
|
| 241 |
+
|
| 242 |
+
if safety_checker is None and requires_safety_checker:
|
| 243 |
+
logger.warning(
|
| 244 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 245 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 246 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 247 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 248 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 249 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
if safety_checker is not None and feature_extractor is None:
|
| 253 |
+
raise ValueError(
|
| 254 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 255 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
self.register_modules(
|
| 259 |
+
vae=vae,
|
| 260 |
+
text_encoder=text_encoder,
|
| 261 |
+
tokenizer=tokenizer,
|
| 262 |
+
unet=unet,
|
| 263 |
+
controlnet=controlnet,
|
| 264 |
+
scheduler=scheduler,
|
| 265 |
+
safety_checker=safety_checker,
|
| 266 |
+
feature_extractor=feature_extractor,
|
| 267 |
+
)
|
| 268 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 269 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 270 |
+
|
| 271 |
+
def enable_vae_slicing(self):
|
| 272 |
+
r"""
|
| 273 |
+
Enable sliced VAE decoding.
|
| 274 |
+
|
| 275 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
| 276 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
| 277 |
+
"""
|
| 278 |
+
self.vae.enable_slicing()
|
| 279 |
+
|
| 280 |
+
def disable_vae_slicing(self):
|
| 281 |
+
r"""
|
| 282 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
| 283 |
+
computing decoding in one step.
|
| 284 |
+
"""
|
| 285 |
+
self.vae.disable_slicing()
|
| 286 |
+
|
| 287 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 288 |
+
r"""
|
| 289 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
| 290 |
+
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
|
| 291 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
| 292 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
| 293 |
+
`enable_model_cpu_offload`, but performance is lower.
|
| 294 |
+
"""
|
| 295 |
+
if is_accelerate_available():
|
| 296 |
+
from accelerate import cpu_offload
|
| 297 |
+
else:
|
| 298 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 299 |
+
|
| 300 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 301 |
+
|
| 302 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
|
| 303 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 304 |
+
|
| 305 |
+
if self.safety_checker is not None:
|
| 306 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
| 307 |
+
|
| 308 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
| 309 |
+
r"""
|
| 310 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
| 311 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
| 312 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
| 313 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
| 314 |
+
"""
|
| 315 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
| 316 |
+
from accelerate import cpu_offload_with_hook
|
| 317 |
+
else:
|
| 318 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
| 319 |
+
|
| 320 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 321 |
+
|
| 322 |
+
hook = None
|
| 323 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
| 324 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
| 325 |
+
|
| 326 |
+
if self.safety_checker is not None:
|
| 327 |
+
# the safety checker can offload the vae again
|
| 328 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
| 329 |
+
|
| 330 |
+
# control net hook has be manually offloaded as it alternates with unet
|
| 331 |
+
cpu_offload_with_hook(self.controlnet, device)
|
| 332 |
+
|
| 333 |
+
# We'll offload the last model manually.
|
| 334 |
+
self.final_offload_hook = hook
|
| 335 |
+
|
| 336 |
+
@property
|
| 337 |
+
def _execution_device(self):
|
| 338 |
+
r"""
|
| 339 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
| 340 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 341 |
+
hooks.
|
| 342 |
+
"""
|
| 343 |
+
if not hasattr(self.unet, "_hf_hook"):
|
| 344 |
+
return self.device
|
| 345 |
+
for module in self.unet.modules():
|
| 346 |
+
if (
|
| 347 |
+
hasattr(module, "_hf_hook")
|
| 348 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 349 |
+
and module._hf_hook.execution_device is not None
|
| 350 |
+
):
|
| 351 |
+
return torch.device(module._hf_hook.execution_device)
|
| 352 |
+
return self.device
|
| 353 |
+
|
| 354 |
+
def _encode_prompt(
|
| 355 |
+
self,
|
| 356 |
+
prompt,
|
| 357 |
+
device,
|
| 358 |
+
num_images_per_prompt,
|
| 359 |
+
do_classifier_free_guidance,
|
| 360 |
+
negative_prompt=None,
|
| 361 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 362 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 363 |
+
):
|
| 364 |
+
r"""
|
| 365 |
+
Encodes the prompt into text encoder hidden states.
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 369 |
+
prompt to be encoded
|
| 370 |
+
device: (`torch.device`):
|
| 371 |
+
torch device
|
| 372 |
+
num_images_per_prompt (`int`):
|
| 373 |
+
number of images that should be generated per prompt
|
| 374 |
+
do_classifier_free_guidance (`bool`):
|
| 375 |
+
whether to use classifier free guidance or not
|
| 376 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 377 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
|
| 378 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
| 379 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 380 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 381 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 382 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 383 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 384 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 385 |
+
argument.
|
| 386 |
+
"""
|
| 387 |
+
if prompt is not None and isinstance(prompt, str):
|
| 388 |
+
batch_size = 1
|
| 389 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 390 |
+
batch_size = len(prompt)
|
| 391 |
+
else:
|
| 392 |
+
batch_size = prompt_embeds.shape[0]
|
| 393 |
+
|
| 394 |
+
if prompt_embeds is None:
|
| 395 |
+
text_inputs = self.tokenizer(
|
| 396 |
+
prompt,
|
| 397 |
+
padding="max_length",
|
| 398 |
+
max_length=self.tokenizer.model_max_length,
|
| 399 |
+
truncation=True,
|
| 400 |
+
return_tensors="pt",
|
| 401 |
+
)
|
| 402 |
+
text_input_ids = text_inputs.input_ids
|
| 403 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 404 |
+
|
| 405 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 406 |
+
text_input_ids, untruncated_ids
|
| 407 |
+
):
|
| 408 |
+
removed_text = self.tokenizer.batch_decode(
|
| 409 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 410 |
+
)
|
| 411 |
+
logger.warning(
|
| 412 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 413 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 417 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 418 |
+
else:
|
| 419 |
+
attention_mask = None
|
| 420 |
+
|
| 421 |
+
prompt_embeds = self.text_encoder(
|
| 422 |
+
text_input_ids.to(device),
|
| 423 |
+
attention_mask=attention_mask,
|
| 424 |
+
)
|
| 425 |
+
prompt_embeds = prompt_embeds[0]
|
| 426 |
+
|
| 427 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 428 |
+
|
| 429 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 430 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 431 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 432 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 433 |
+
|
| 434 |
+
# get unconditional embeddings for classifier free guidance
|
| 435 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 436 |
+
uncond_tokens: List[str]
|
| 437 |
+
if negative_prompt is None:
|
| 438 |
+
uncond_tokens = [""] * batch_size
|
| 439 |
+
elif type(prompt) is not type(negative_prompt):
|
| 440 |
+
raise TypeError(
|
| 441 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 442 |
+
f" {type(prompt)}."
|
| 443 |
+
)
|
| 444 |
+
elif isinstance(negative_prompt, str):
|
| 445 |
+
uncond_tokens = [negative_prompt]
|
| 446 |
+
elif batch_size != len(negative_prompt):
|
| 447 |
+
raise ValueError(
|
| 448 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 449 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 450 |
+
" the batch size of `prompt`."
|
| 451 |
+
)
|
| 452 |
+
else:
|
| 453 |
+
uncond_tokens = negative_prompt
|
| 454 |
+
|
| 455 |
+
max_length = prompt_embeds.shape[1]
|
| 456 |
+
uncond_input = self.tokenizer(
|
| 457 |
+
uncond_tokens,
|
| 458 |
+
padding="max_length",
|
| 459 |
+
max_length=max_length,
|
| 460 |
+
truncation=True,
|
| 461 |
+
return_tensors="pt",
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 465 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 466 |
+
else:
|
| 467 |
+
attention_mask = None
|
| 468 |
+
|
| 469 |
+
negative_prompt_embeds = self.text_encoder(
|
| 470 |
+
uncond_input.input_ids.to(device),
|
| 471 |
+
attention_mask=attention_mask,
|
| 472 |
+
)
|
| 473 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 474 |
+
|
| 475 |
+
if do_classifier_free_guidance:
|
| 476 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 477 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 478 |
+
|
| 479 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 480 |
+
|
| 481 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 482 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 483 |
+
|
| 484 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 485 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 486 |
+
# to avoid doing two forward passes
|
| 487 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 488 |
+
|
| 489 |
+
return prompt_embeds
|
| 490 |
+
|
| 491 |
+
def run_safety_checker(self, image, device, dtype):
|
| 492 |
+
if self.safety_checker is not None:
|
| 493 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
| 494 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 495 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 496 |
+
)
|
| 497 |
+
else:
|
| 498 |
+
has_nsfw_concept = None
|
| 499 |
+
return image, has_nsfw_concept
|
| 500 |
+
|
| 501 |
+
def decode_latents(self, latents):
|
| 502 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 503 |
+
image = self.vae.decode(latents).sample
|
| 504 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 505 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 506 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 507 |
+
return image
|
| 508 |
+
|
| 509 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 510 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 511 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 512 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 513 |
+
# and should be between [0, 1]
|
| 514 |
+
|
| 515 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 516 |
+
extra_step_kwargs = {}
|
| 517 |
+
if accepts_eta:
|
| 518 |
+
extra_step_kwargs["eta"] = eta
|
| 519 |
+
|
| 520 |
+
# check if the scheduler accepts generator
|
| 521 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 522 |
+
if accepts_generator:
|
| 523 |
+
extra_step_kwargs["generator"] = generator
|
| 524 |
+
return extra_step_kwargs
|
| 525 |
+
|
| 526 |
+
def check_inputs(
|
| 527 |
+
self,
|
| 528 |
+
prompt,
|
| 529 |
+
image,
|
| 530 |
+
mask_image,
|
| 531 |
+
controlnet_conditioning_image,
|
| 532 |
+
height,
|
| 533 |
+
width,
|
| 534 |
+
callback_steps,
|
| 535 |
+
negative_prompt=None,
|
| 536 |
+
prompt_embeds=None,
|
| 537 |
+
negative_prompt_embeds=None,
|
| 538 |
+
):
|
| 539 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 540 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 541 |
+
|
| 542 |
+
if (callback_steps is None) or (
|
| 543 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 544 |
+
):
|
| 545 |
+
raise ValueError(
|
| 546 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 547 |
+
f" {type(callback_steps)}."
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
if prompt is not None and prompt_embeds is not None:
|
| 551 |
+
raise ValueError(
|
| 552 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 553 |
+
" only forward one of the two."
|
| 554 |
+
)
|
| 555 |
+
elif prompt is None and prompt_embeds is None:
|
| 556 |
+
raise ValueError(
|
| 557 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 558 |
+
)
|
| 559 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 560 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 561 |
+
|
| 562 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 563 |
+
raise ValueError(
|
| 564 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 565 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 569 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 570 |
+
raise ValueError(
|
| 571 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 572 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 573 |
+
f" {negative_prompt_embeds.shape}."
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
controlnet_cond_image_is_pil = isinstance(controlnet_conditioning_image, PIL.Image.Image)
|
| 577 |
+
controlnet_cond_image_is_tensor = isinstance(controlnet_conditioning_image, torch.Tensor)
|
| 578 |
+
controlnet_cond_image_is_pil_list = isinstance(controlnet_conditioning_image, list) and isinstance(
|
| 579 |
+
controlnet_conditioning_image[0], PIL.Image.Image
|
| 580 |
+
)
|
| 581 |
+
controlnet_cond_image_is_tensor_list = isinstance(controlnet_conditioning_image, list) and isinstance(
|
| 582 |
+
controlnet_conditioning_image[0], torch.Tensor
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
if (
|
| 586 |
+
not controlnet_cond_image_is_pil
|
| 587 |
+
and not controlnet_cond_image_is_tensor
|
| 588 |
+
and not controlnet_cond_image_is_pil_list
|
| 589 |
+
and not controlnet_cond_image_is_tensor_list
|
| 590 |
+
):
|
| 591 |
+
raise TypeError(
|
| 592 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
if controlnet_cond_image_is_pil:
|
| 596 |
+
controlnet_cond_image_batch_size = 1
|
| 597 |
+
elif controlnet_cond_image_is_tensor:
|
| 598 |
+
controlnet_cond_image_batch_size = controlnet_conditioning_image.shape[0]
|
| 599 |
+
elif controlnet_cond_image_is_pil_list:
|
| 600 |
+
controlnet_cond_image_batch_size = len(controlnet_conditioning_image)
|
| 601 |
+
elif controlnet_cond_image_is_tensor_list:
|
| 602 |
+
controlnet_cond_image_batch_size = len(controlnet_conditioning_image)
|
| 603 |
+
|
| 604 |
+
if prompt is not None and isinstance(prompt, str):
|
| 605 |
+
prompt_batch_size = 1
|
| 606 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 607 |
+
prompt_batch_size = len(prompt)
|
| 608 |
+
elif prompt_embeds is not None:
|
| 609 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
| 610 |
+
|
| 611 |
+
if controlnet_cond_image_batch_size != 1 and controlnet_cond_image_batch_size != prompt_batch_size:
|
| 612 |
+
raise ValueError(
|
| 613 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {controlnet_cond_image_batch_size}, prompt batch size: {prompt_batch_size}"
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor):
|
| 617 |
+
raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor")
|
| 618 |
+
|
| 619 |
+
if isinstance(image, PIL.Image.Image) and not isinstance(mask_image, PIL.Image.Image):
|
| 620 |
+
raise TypeError("if `image` is a PIL image, `mask_image` must also be a PIL image")
|
| 621 |
+
|
| 622 |
+
if isinstance(image, torch.Tensor):
|
| 623 |
+
if image.ndim != 3 and image.ndim != 4:
|
| 624 |
+
raise ValueError("`image` must have 3 or 4 dimensions")
|
| 625 |
+
|
| 626 |
+
if mask_image.ndim != 2 and mask_image.ndim != 3 and mask_image.ndim != 4:
|
| 627 |
+
raise ValueError("`mask_image` must have 2, 3, or 4 dimensions")
|
| 628 |
+
|
| 629 |
+
if image.ndim == 3:
|
| 630 |
+
image_batch_size = 1
|
| 631 |
+
image_channels, image_height, image_width = image.shape
|
| 632 |
+
elif image.ndim == 4:
|
| 633 |
+
image_batch_size, image_channels, image_height, image_width = image.shape
|
| 634 |
+
|
| 635 |
+
if mask_image.ndim == 2:
|
| 636 |
+
mask_image_batch_size = 1
|
| 637 |
+
mask_image_channels = 1
|
| 638 |
+
mask_image_height, mask_image_width = mask_image.shape
|
| 639 |
+
elif mask_image.ndim == 3:
|
| 640 |
+
mask_image_channels = 1
|
| 641 |
+
mask_image_batch_size, mask_image_height, mask_image_width = mask_image.shape
|
| 642 |
+
elif mask_image.ndim == 4:
|
| 643 |
+
mask_image_batch_size, mask_image_channels, mask_image_height, mask_image_width = mask_image.shape
|
| 644 |
+
|
| 645 |
+
if image_channels != 3:
|
| 646 |
+
raise ValueError("`image` must have 3 channels")
|
| 647 |
+
|
| 648 |
+
if mask_image_channels != 1:
|
| 649 |
+
raise ValueError("`mask_image` must have 1 channel")
|
| 650 |
+
|
| 651 |
+
if image_batch_size != mask_image_batch_size:
|
| 652 |
+
raise ValueError("`image` and `mask_image` mush have the same batch sizes")
|
| 653 |
+
|
| 654 |
+
if image_height != mask_image_height or image_width != mask_image_width:
|
| 655 |
+
raise ValueError("`image` and `mask_image` must have the same height and width dimensions")
|
| 656 |
+
|
| 657 |
+
if image.min() < -1 or image.max() > 1:
|
| 658 |
+
raise ValueError("`image` should be in range [-1, 1]")
|
| 659 |
+
|
| 660 |
+
if mask_image.min() < 0 or mask_image.max() > 1:
|
| 661 |
+
raise ValueError("`mask_image` should be in range [0, 1]")
|
| 662 |
+
else:
|
| 663 |
+
mask_image_channels = 1
|
| 664 |
+
image_channels = 3
|
| 665 |
+
|
| 666 |
+
single_image_latent_channels = self.vae.config.latent_channels
|
| 667 |
+
|
| 668 |
+
total_latent_channels = single_image_latent_channels * 2 + mask_image_channels
|
| 669 |
+
|
| 670 |
+
if total_latent_channels != self.unet.config.in_channels:
|
| 671 |
+
raise ValueError(
|
| 672 |
+
f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received"
|
| 673 |
+
f" non inpainting latent channels: {single_image_latent_channels},"
|
| 674 |
+
f" mask channels: {mask_image_channels}, and masked image channels: {single_image_latent_channels}."
|
| 675 |
+
f" Please verify the config of `pipeline.unet` and the `mask_image` and `image` inputs."
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 679 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 680 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 681 |
+
raise ValueError(
|
| 682 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 683 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
if latents is None:
|
| 687 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 688 |
+
else:
|
| 689 |
+
latents = latents.to(device)
|
| 690 |
+
|
| 691 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 692 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 693 |
+
|
| 694 |
+
return latents
|
| 695 |
+
|
| 696 |
+
def prepare_mask_latents(self, mask_image, batch_size, height, width, dtype, device, do_classifier_free_guidance):
|
| 697 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 698 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 699 |
+
# and half precision
|
| 700 |
+
mask_image = F.interpolate(mask_image, size=(height // self.vae_scale_factor, width // self.vae_scale_factor))
|
| 701 |
+
mask_image = mask_image.to(device=device, dtype=dtype)
|
| 702 |
+
|
| 703 |
+
# duplicate mask for each generation per prompt, using mps friendly method
|
| 704 |
+
if mask_image.shape[0] < batch_size:
|
| 705 |
+
if not batch_size % mask_image.shape[0] == 0:
|
| 706 |
+
raise ValueError(
|
| 707 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
| 708 |
+
f" a total batch size of {batch_size}, but {mask_image.shape[0]} masks were passed. Make sure the number"
|
| 709 |
+
" of masks that you pass is divisible by the total requested batch size."
|
| 710 |
+
)
|
| 711 |
+
mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1)
|
| 712 |
+
|
| 713 |
+
mask_image = torch.cat([mask_image] * 2) if do_classifier_free_guidance else mask_image
|
| 714 |
+
|
| 715 |
+
mask_image_latents = mask_image
|
| 716 |
+
|
| 717 |
+
return mask_image_latents
|
| 718 |
+
|
| 719 |
+
def prepare_masked_image_latents(
|
| 720 |
+
self, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
| 721 |
+
):
|
| 722 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
| 723 |
+
|
| 724 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
| 725 |
+
if isinstance(generator, list):
|
| 726 |
+
masked_image_latents = [
|
| 727 |
+
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
| 728 |
+
for i in range(batch_size)
|
| 729 |
+
]
|
| 730 |
+
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
| 731 |
+
else:
|
| 732 |
+
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
| 733 |
+
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
|
| 734 |
+
|
| 735 |
+
# duplicate masked_image_latents for each generation per prompt, using mps friendly method
|
| 736 |
+
if masked_image_latents.shape[0] < batch_size:
|
| 737 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
| 738 |
+
raise ValueError(
|
| 739 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 740 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 741 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 742 |
+
)
|
| 743 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
| 744 |
+
|
| 745 |
+
masked_image_latents = (
|
| 746 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
| 750 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
| 751 |
+
return masked_image_latents
|
| 752 |
+
|
| 753 |
+
def _default_height_width(self, height, width, image):
|
| 754 |
+
if isinstance(image, list):
|
| 755 |
+
image = image[0]
|
| 756 |
+
|
| 757 |
+
if height is None:
|
| 758 |
+
if isinstance(image, PIL.Image.Image):
|
| 759 |
+
height = image.height
|
| 760 |
+
elif isinstance(image, torch.Tensor):
|
| 761 |
+
height = image.shape[3]
|
| 762 |
+
|
| 763 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
| 764 |
+
|
| 765 |
+
if width is None:
|
| 766 |
+
if isinstance(image, PIL.Image.Image):
|
| 767 |
+
width = image.width
|
| 768 |
+
elif isinstance(image, torch.Tensor):
|
| 769 |
+
width = image.shape[2]
|
| 770 |
+
|
| 771 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
| 772 |
+
|
| 773 |
+
return height, width
|
| 774 |
+
|
| 775 |
+
@torch.no_grad()
|
| 776 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 777 |
+
def __call__(
|
| 778 |
+
self,
|
| 779 |
+
prompt: Union[str, List[str]] = None,
|
| 780 |
+
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
| 781 |
+
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
| 782 |
+
controlnet_conditioning_image: Union[
|
| 783 |
+
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
|
| 784 |
+
] = None,
|
| 785 |
+
height: Optional[int] = None,
|
| 786 |
+
width: Optional[int] = None,
|
| 787 |
+
num_inference_steps: int = 50,
|
| 788 |
+
guidance_scale: float = 7.5,
|
| 789 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 790 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 791 |
+
eta: float = 0.0,
|
| 792 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 793 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 794 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 795 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 796 |
+
output_type: Optional[str] = "pil",
|
| 797 |
+
return_dict: bool = True,
|
| 798 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 799 |
+
callback_steps: int = 1,
|
| 800 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 801 |
+
controlnet_conditioning_scale: float = 1.0,
|
| 802 |
+
):
|
| 803 |
+
r"""
|
| 804 |
+
Function invoked when calling the pipeline for generation.
|
| 805 |
+
|
| 806 |
+
Args:
|
| 807 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 808 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 809 |
+
instead.
|
| 810 |
+
image (`torch.Tensor` or `PIL.Image.Image`):
|
| 811 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
| 812 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
| 813 |
+
mask_image (`torch.Tensor` or `PIL.Image.Image`):
|
| 814 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
| 815 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
| 816 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
| 817 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
| 818 |
+
controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
|
| 819 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
| 820 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
|
| 821 |
+
also be accepted as an image. The control image is automatically resized to fit the output image.
|
| 822 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 823 |
+
The height in pixels of the generated image.
|
| 824 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 825 |
+
The width in pixels of the generated image.
|
| 826 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 827 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 828 |
+
expense of slower inference.
|
| 829 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 830 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 831 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 832 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 833 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 834 |
+
usually at the expense of lower image quality.
|
| 835 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 836 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
|
| 837 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
| 838 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 839 |
+
The number of images to generate per prompt.
|
| 840 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 841 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 842 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 843 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 844 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 845 |
+
to make generation deterministic.
|
| 846 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 847 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 848 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 849 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 850 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 851 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 852 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 853 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 854 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 855 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 856 |
+
argument.
|
| 857 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 858 |
+
The output format of the generate image. Choose between
|
| 859 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 860 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 861 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 862 |
+
plain tuple.
|
| 863 |
+
callback (`Callable`, *optional*):
|
| 864 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 865 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 866 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 867 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 868 |
+
called at every step.
|
| 869 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 870 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 871 |
+
`self.processor` in
|
| 872 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 873 |
+
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
| 874 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
| 875 |
+
to the residual in the original unet.
|
| 876 |
+
|
| 877 |
+
Examples:
|
| 878 |
+
|
| 879 |
+
Returns:
|
| 880 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 881 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 882 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 883 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 884 |
+
(nsfw) content, according to the `safety_checker`.
|
| 885 |
+
"""
|
| 886 |
+
# 0. Default height and width to unet
|
| 887 |
+
height, width = self._default_height_width(height, width, controlnet_conditioning_image)
|
| 888 |
+
|
| 889 |
+
# 1. Check inputs. Raise error if not correct
|
| 890 |
+
self.check_inputs(
|
| 891 |
+
prompt,
|
| 892 |
+
image,
|
| 893 |
+
mask_image,
|
| 894 |
+
controlnet_conditioning_image,
|
| 895 |
+
height,
|
| 896 |
+
width,
|
| 897 |
+
callback_steps,
|
| 898 |
+
negative_prompt,
|
| 899 |
+
prompt_embeds,
|
| 900 |
+
negative_prompt_embeds,
|
| 901 |
+
)
|
| 902 |
+
|
| 903 |
+
# 2. Define call parameters
|
| 904 |
+
if prompt is not None and isinstance(prompt, str):
|
| 905 |
+
batch_size = 1
|
| 906 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 907 |
+
batch_size = len(prompt)
|
| 908 |
+
else:
|
| 909 |
+
batch_size = prompt_embeds.shape[0]
|
| 910 |
+
|
| 911 |
+
device = self._execution_device
|
| 912 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 913 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 914 |
+
# corresponds to doing no classifier free guidance.
|
| 915 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 916 |
+
|
| 917 |
+
# 3. Encode input prompt
|
| 918 |
+
prompt_embeds = self._encode_prompt(
|
| 919 |
+
prompt,
|
| 920 |
+
device,
|
| 921 |
+
num_images_per_prompt,
|
| 922 |
+
do_classifier_free_guidance,
|
| 923 |
+
negative_prompt,
|
| 924 |
+
prompt_embeds=prompt_embeds,
|
| 925 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
# 4. Prepare mask, image, and controlnet_conditioning_image
|
| 929 |
+
image = prepare_image(image)
|
| 930 |
+
|
| 931 |
+
mask_image = prepare_mask_image(mask_image)
|
| 932 |
+
|
| 933 |
+
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
|
| 934 |
+
controlnet_conditioning_image,
|
| 935 |
+
width,
|
| 936 |
+
height,
|
| 937 |
+
batch_size * num_images_per_prompt,
|
| 938 |
+
num_images_per_prompt,
|
| 939 |
+
device,
|
| 940 |
+
self.controlnet.dtype,
|
| 941 |
+
)
|
| 942 |
+
|
| 943 |
+
masked_image = image * (mask_image < 0.5)
|
| 944 |
+
|
| 945 |
+
# 5. Prepare timesteps
|
| 946 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 947 |
+
timesteps = self.scheduler.timesteps
|
| 948 |
+
|
| 949 |
+
# 6. Prepare latent variables
|
| 950 |
+
num_channels_latents = self.vae.config.latent_channels
|
| 951 |
+
latents = self.prepare_latents(
|
| 952 |
+
batch_size * num_images_per_prompt,
|
| 953 |
+
num_channels_latents,
|
| 954 |
+
height,
|
| 955 |
+
width,
|
| 956 |
+
prompt_embeds.dtype,
|
| 957 |
+
device,
|
| 958 |
+
generator,
|
| 959 |
+
latents,
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
mask_image_latents = self.prepare_mask_latents(
|
| 963 |
+
mask_image,
|
| 964 |
+
batch_size * num_images_per_prompt,
|
| 965 |
+
height,
|
| 966 |
+
width,
|
| 967 |
+
prompt_embeds.dtype,
|
| 968 |
+
device,
|
| 969 |
+
do_classifier_free_guidance,
|
| 970 |
+
)
|
| 971 |
+
|
| 972 |
+
masked_image_latents = self.prepare_masked_image_latents(
|
| 973 |
+
masked_image,
|
| 974 |
+
batch_size * num_images_per_prompt,
|
| 975 |
+
height,
|
| 976 |
+
width,
|
| 977 |
+
prompt_embeds.dtype,
|
| 978 |
+
device,
|
| 979 |
+
generator,
|
| 980 |
+
do_classifier_free_guidance,
|
| 981 |
+
)
|
| 982 |
+
|
| 983 |
+
if do_classifier_free_guidance:
|
| 984 |
+
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
|
| 985 |
+
|
| 986 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 987 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 988 |
+
|
| 989 |
+
# 8. Denoising loop
|
| 990 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 991 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 992 |
+
for i, t in enumerate(timesteps):
|
| 993 |
+
# expand the latents if we are doing classifier free guidance
|
| 994 |
+
non_inpainting_latent_model_input = (
|
| 995 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 996 |
+
)
|
| 997 |
+
|
| 998 |
+
non_inpainting_latent_model_input = self.scheduler.scale_model_input(
|
| 999 |
+
non_inpainting_latent_model_input, t
|
| 1000 |
+
)
|
| 1001 |
+
|
| 1002 |
+
inpainting_latent_model_input = torch.cat(
|
| 1003 |
+
[non_inpainting_latent_model_input, mask_image_latents, masked_image_latents], dim=1
|
| 1004 |
+
)
|
| 1005 |
+
|
| 1006 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 1007 |
+
non_inpainting_latent_model_input,
|
| 1008 |
+
t,
|
| 1009 |
+
encoder_hidden_states=prompt_embeds,
|
| 1010 |
+
controlnet_cond=controlnet_conditioning_image,
|
| 1011 |
+
return_dict=False,
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
down_block_res_samples = [
|
| 1015 |
+
down_block_res_sample * controlnet_conditioning_scale
|
| 1016 |
+
for down_block_res_sample in down_block_res_samples
|
| 1017 |
+
]
|
| 1018 |
+
mid_block_res_sample *= controlnet_conditioning_scale
|
| 1019 |
+
|
| 1020 |
+
# predict the noise residual
|
| 1021 |
+
noise_pred = self.unet(
|
| 1022 |
+
inpainting_latent_model_input,
|
| 1023 |
+
t,
|
| 1024 |
+
encoder_hidden_states=prompt_embeds,
|
| 1025 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1026 |
+
down_block_additional_residuals=down_block_res_samples,
|
| 1027 |
+
mid_block_additional_residual=mid_block_res_sample,
|
| 1028 |
+
).sample
|
| 1029 |
+
|
| 1030 |
+
# perform guidance
|
| 1031 |
+
if do_classifier_free_guidance:
|
| 1032 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1033 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1034 |
+
|
| 1035 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1036 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 1037 |
+
|
| 1038 |
+
# call the callback, if provided
|
| 1039 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1040 |
+
progress_bar.update()
|
| 1041 |
+
if callback is not None and i % callback_steps == 0:
|
| 1042 |
+
callback(i, t, latents)
|
| 1043 |
+
|
| 1044 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
| 1045 |
+
# manually for max memory savings
|
| 1046 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 1047 |
+
self.unet.to("cpu")
|
| 1048 |
+
self.controlnet.to("cpu")
|
| 1049 |
+
torch.cuda.empty_cache()
|
| 1050 |
+
|
| 1051 |
+
if output_type == "latent":
|
| 1052 |
+
image = latents
|
| 1053 |
+
has_nsfw_concept = None
|
| 1054 |
+
elif output_type == "pil":
|
| 1055 |
+
# 8. Post-processing
|
| 1056 |
+
image = self.decode_latents(latents)
|
| 1057 |
+
|
| 1058 |
+
# 9. Run safety checker
|
| 1059 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1060 |
+
|
| 1061 |
+
# 10. Convert to PIL
|
| 1062 |
+
image = self.numpy_to_pil(image)
|
| 1063 |
+
else:
|
| 1064 |
+
# 8. Post-processing
|
| 1065 |
+
image = self.decode_latents(latents)
|
| 1066 |
+
|
| 1067 |
+
# 9. Run safety checker
|
| 1068 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1069 |
+
|
| 1070 |
+
# Offload last model to CPU
|
| 1071 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 1072 |
+
self.final_offload_hook.offload()
|
| 1073 |
+
|
| 1074 |
+
if not return_dict:
|
| 1075 |
+
return (image, has_nsfw_concept)
|
| 1076 |
+
|
| 1077 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
diffusers
|
| 4 |
+
git+https://github.com/facebookresearch/segment-anything.git
|
| 5 |
+
opencv-python
|
| 6 |
+
pycocotools
|
| 7 |
+
matplotlib
|
| 8 |
+
onnxruntime
|
| 9 |
+
onnx
|
| 10 |
+
transformers
|
| 11 |
+
accelerate
|
| 12 |
+
xformers
|
sam_vit_h_4b8939.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e
|
| 3 |
+
size 2564550879
|